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B U M L I N G   A N A L Y S I S  l 9 R  AXIALLY COMPRESSED FLAT PLATES, 

STRUCTURAL SECTIONS, AND STIFFENED PLATES REINFORCED 

W I T H  LAMINATED COMPOSITES 

A. V. Viswanathan, Tsai-Chen Soong, R. E. Miller, Jr. 

The Boeing Company, S e a t t l e ,  Washington 

1. ABSTRACT 

A classical buckling  analysis is developed f o r   s t i f f e n e d ,  flat p l a t e s  
composed of a seriea of  l inked flat p l a t e  aud beam el,e!nn?nt8. P l a t e s  are 
ideal ized as multilayered  orthotropic  elements;   structural  bends and l i p s  
8re ideal ized as beams. The loaded  edges of  t h e   s t i f f e n e d   p l a t e  are simply 
supported and the   condi t ions  at the  unloaded edges can be prescribed arbi- 
trarily. The plate and beam elenrsnts are matched d o n g   t h e i r  common 
junctions for dieplncenrcnt  continuity and force  equilibrium i n  an exact 
manner. Offsets betvecn  elenrents are considered in the   analyais .  
Buckling under   uniar ia l   ccmpressive  load  for   plates ,   sect ions  and  s t i f fened 
p la tes  is investigsted.  Buckling loads are found as the   lowcrt   of  all 
possible general  and & c a l  failure modes and t h e  mode shnpe is used t o  
deteraine  vhether  buckling is n l o c a l   o r  genered i n s t a b i l i t y .  Numerical 
cor re l s t ions  with e x i e t i n g   m r l y e i s  and test data fo r   p ln t e s ,   s ec t ions  
and  s t i f fened  plates   including  boron-reinforced  s t ructures  are discussed. 
In  general ,   correlat ions are reemonably good. 
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2. NOMENCLATURZ 

& 

51 9A12sA22 'A66 
% 
b 

'11 rB12 rB22 wB66 
D1l sD22 'D66 

*'22 sG12 *G23 
Gli ,G2i 'G3i ' G 4 i  

hk 

p i  
P 

'b 
- 

length of pla te ,  Eq. (5.1) 

matrix .elements, Eq. ( 4.7) 

cross   sect ional  area of beam 

width of pla te ,  Eq. (5.1) 
elements of matrix, Eq.  (4.8) 
elements of matrix, Eq. (4.9) 

or thotropic  modulus of e l a s t i c i t y ,  Eq. (4.2) 

E q e .  (5.1Oa) 
distance of the  kth layer t o  t h e  reference plane, 
Fig. 4.1 
distance of kth layer t o   t h e   n e u t r a l   p l a n e ,  Fig.  4.1 

moment of i n e r t i a  

moment of i n e r t i a s  of beam about x ,  y and z axes, 
Fig. 4.2 
toreional  constant,  Eq. (4.12) 
diagonal  matrix for spring  constants ,  Eq.  (5.57) 

spr ing  constants   in   the  global   coordinate   direct ions,  
E q .  (5.57) 
spring  constants,  E q s .  (5.2) and (5.3) 
coef f ic ien ts  of character is t ic   equat ion,  Eq. (5.6) 
t o t a l  number of layers  of a laminated  plate,  Eq.  (4.3) 
E q s .  (5.8) 
half-wave number, Eq. (5 .1 )  
Eq. (5.20) 
moments, Eq. (4.6) 
Eq. (5.21) 

Eq. (5.22) 
stress resultants, EQ. (4.5) 
in-plane  buckling  loads,   lb/in.  , Eq. ( 4.16) 

parsmeter, Xq. (5.1) 
i n t e rna l  axial load on beam, Eq. (5.41) 
end load on  beam, Fig. 4.2 
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[ I  

Eq. (5.19) 
l a t e r a l   l o a d s  on beam i n  y  and z di rec t ions ,  EQ. (5.41) 
t ransverse  shear  on p l a t e ,  Eq. (4.17d and Eq- (5.12) 

or thot ropic i ty   cons tan ts ,  Eq. (4.2) 

s t i f fnes s   cons t an t   fo r   an i so t rop ic  plate, kth l a y e r  

displacement  coefficient  matrices,  Eqs. (5.26)  and (5.44) 
Eq. (5.5) 
e l e m n t  (1, 1) of matrix [%J]-l,.Eqb (4.3) 
thickness   of  kth le;yer, Fig. 4.1 
transformation  matrix,  Eq. (5.32). Eq. (5.35) 
torque on  beam, Eq. 4.19 
displacements of t h e  neutral   p lane of a p l a t e ,  
Eq. (4.4) 
Poisson 's   ra t ios   of   or thotropic   plate ,  Eq. (4.2) 

dieplrcements  constants of beam, Eqs. (5.40) 

local  coordinates,   Fig.  4.1 
matrices i n  Eqs.  (5.251,  (5.291, (5.33) and (5.34) 
respect ively 

matrices in Eqs. (5.361, (5.371, (5.44) and (5.47) 
respec t ive ly  

matrices in Eqs. (5.501, (5.531, (5.61)  respectively 

matrices i n  Eqs. (5.62) 

d i s t ances   o f   o f f se t   i n  y and z d i rec t ions ,  Fig. 5.2 
distance t o  neutral   p lane,  Eq. ( 4 . 4 )  
d is tance of neu t ra l   ax i s  of laminated plate ,  Eq. (4.3) 

coord ina tes   in   the   p r inc ip le   d i rec t ions  of orthotro- 
pici ty ,   Fig.  4.1 
rectangular  or  square  matrix 

colunm matrix 
diagonal  matrix 

a( ) l a x  
wave-mode parameter,  Eqs. (5:l) and (5.18) 
in-plane stress components, Eq. (4.1) 
beam property,  Eq. (4.11), which is the averaged  value 
of ( s t r e s s  times polar  moment of i n e r t i a )  
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Superscr ipts  

k 

+ 

Subscripts  

BG 

BS 

G 

(1) ,(2) ,e tc .  
i 

i 3  
k 

PG 
PS 
RG 

S 

u;v ,w 

in-plane  uni t   s t ra ins ,  Eq. (4.1) 

beam rotation  about x-axis, Eq. (4.19) 

displacement  coefficient , Eq. ( 5.40) 
Eqs. (5.41) 
in-plane strain camponente, Eq. (4 .1)  
warping  constant, Eq. (4.10) 

angle between global  and  local  coordinates,   Fig.  5.2 

Eqs. (5.14) t o  (5.17) 

numbering of  lamina  layers 

quan t i t i e s   r e l a t ed  t o  side o f   p l a t e  a t  y = +b/2 

q u a n t i t i e s   r e l a t e d   t o   s i d e   o f   p l a t e  at y = -b/2 

quantity  belongs t o  heam element,  Llobal  coordinates 

quantity  belongs to keam element,   local  coordinates 

r e f e r  t o  Llobal   Coordinates  

element numbers, Figs. 5.1, 5.3, 5.4 
numbering of cha rac t e r i s t i c   roo t s  

matrix  element  subscript  

numbering of   lamina  layers  

quantity  belongs t o  plate   e lement ,  global coordinate 

quantity  belongs t o  plate  element,  local coordinates 
- - 
- 

- r e s t r a in ing   fo rces ,  - global  coordinates,  Eq. (5.57) 
refer t o   o f f s e t   c e n t e r  "S" 
along  direct ions  of  x, y ,  and z respect ively 
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I 

3. INTRODUCTION 

There have been numerous publ icat ions on genera l   and   loca l   ins tab i l i t i es  
o f   s t ruc tu re  components  under a x i a l  compression t h a t  are made of flat 
p l a t e s  and beam-like elements. To c i t e  a few, Ramberg and kvyl* studied  
open sec t ion   ex t rus ions   in  which loca l  i n s t a b i l i t y  was estimated  by buck- 
ling of flangeu taken ae p la t e s   w i th   su i t ab le  edge conditions and general  
ins tab i l i ty   ana lyzed  by t r e a t i n g   t h e   e x t r u e i o n  ae a column. Similar  
approximations were u s e d   i n  Goodman and Boy# and Goodman’s3 s tud ie s  of 
bulb-reinforced flanges. For structural sections,   such tu Z, T, channels 
and   ha t - type   sec t ions ,   and   i so t ropic   p la tes   s t i f fened   by   such   sec t ions ,  
a usual prac t ice   o f   ana lys i s  is t o  treat them as 811 esse&lage of  flat 
plate  elements  connected  r igidly  along the  straight boundaries  and  each 
element  has  the same s inusoida l  axial  mde. The p l a t e  i s  usual ly   taken 
as i n f i n i t e l y  wide and the   cons t r a in t s  on its s ides  are then  neglected.  

Since a t h i n   p l a t e  i s  rather st iff  i n  the in-plane  direct ions,   the  
common junction between two plate   e lements  can be taken  approximately 
as simply  supported as far as la teral  displacement i s  concerned. This 
s impl i f ica t ion   reduces   ana ly t ica l  work considerab y and makes poss ib le  some 
approximate  solutions  such as moment-distribution t . However, vhen t h i s  
simple-support  assumption i s  removed,  one needs  not  only t o   c o n s i d e r  the 
lateral displacements at the junct ion,   but   a lso the in-plane  motions 
thereof  induced  by  buckling. Thus, a rigorous  theory  should  consider 
the  e t i f f ened   p l a t e  as an assemblage of a s ing le   o r   r epea ted   s t i f f ened  
panels which consis t   of  a series of flat th in   s t r i p s ,   con t inuous ly  con- 
nected w i t h  each  other at t h e i r  edges and  no r e s t r a i n t s  assumed. I n  
t h i s  category, one thinks of flat  p la tes   re inforced  by s t r u c t u r a l   s e c t i o n s  
and  sandwiches w i t h  corrugated  core. It i s  p o s s i b l e   t o  derive, i n  a 
rigorous manner, a unified  approach  for a buckl ing  analysis  which  need 
not   dis t inguish between the so-cal led  local  modes and the  qeneral  modes. 
The lowest  load  level that  causes any p la t e   e l emen t   t o   i n i t i a t e  a buckling 
deformation  before  the  others do ( l o c a l  modes) or   causes  several p l a t e  
elements t o  have  simultaneous  deformation  (general modes) i s  the buckling 
load  of the s t i f f e n e d   p l a t e   o r   s e c t i o n .  The unified  approach  which seem 
t o  be the  most exact  at the present  stage of development  can be  repre- 
sen ted ,   for  example, by Wittrick’s  paper5,  and some analyses  of similar 
nature   but  with various  degrees  of  exactness and generali ty  can be seen 
i n  Refs. 6 through  12. 

The present   ana lys i s   b r ings   the   research  on s t i f fened   p la tes   and  
sections  another  step  forward. Here the   bas ic   bu i ld ing   b locks   o f   the  
unified  approach, t h a t  i s ,  the flat p l a t e  element and t h e  beem element 
tha t  is  used t o   r e p r e s e n t  beams, l i p s  and beads of  flanges,  have  been 
extended to  unidirectional,   laminated  composites which, of course, include 
i so t rop ic  material as a p a r t i c u l a r  case. The theory aesumcs t h a t  the 
or thot ropic   phys ica l   p roper t ies  of each  layer   of  the cmposites are 
given , i e. , E11 , E22 , %2 , v12 md v21 ( “21 = v12E22/Ell) , and  the 
u a u a  Kirchhoff-Love  assumption regarding  plane  sect ion remainp plsne 

*References are col lec ted  at the  end  of t h e  text 
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is valid.  Lips  and beads o f  a flange are regarded as beams elastically 
a t tached  t o  t h e   s i d e   o f   t h e  flange, and the  coupl ing between axial load 
and the curvature change is neglected.  If t h e   b e a d  is composite.  rein- 
forced, i ts phys ica l   p roper t ies  are c a l c u l a t e d   i n  an approximate manner. 
The eccent r ic i ty   o f   connec t ions  between p l a t e  elements and between p l a t e s  
and beads as w e l l  as conditions  of all unloaded  edges  of   the  plate  ele- 
ments are considered  in   the analysis. 

S i n c e   i n  most cases where f iber reinforced  composites are being  used 
as re inforcements   in   s t ruc tura l   sec t ions ,   the   d i rec t ion   of  the f i b e r  
always rune i n   t h e  same di rec t ion  as the a x i s  o f   t h e   s e c t i o n ,   t h e  stress- 
atrain  equat ion0 used i n  t h e   m u l y s i s  ami! r e s t r i c t e d   t o   t h i s   t y p e  of 
or thot ropic i ty .  'l'his eimplifictrt ion,  which  does not limit t h e  genera l i ty  
of the  present  theory,   reduces  greatly  the  complexity  of  algebraic mani- 
pu la t ions   in  the ana lys i s  as well as i n   t h e  computer  programs. If one 
needs t o  accommodate thermal effects snd arb i t ra r i ly   inc l ined   lamina ted  
composites i n   t h e   a n a l y s i s ,  one  needs  only t o  use  the  appropriate  stress- 
s t r a in   r e l a t ionsh ips   i n   t he   beg inn ing   o f   t he   de r iva t ions .  These equations 
are a v a i l a b l e   i n   e x i s t i n g   l i t e r a t u r e ,   f o r  example, Refs. 13 and 14. 

Ln the  following text, the  basic   equat ions  for   laminated  plates   and 
beams were derived and the  geometr ic  and na tu ra l  boundary  equations 
necessary  for   enforcing  cont inui ty   and  equi l ibr ium  along the junct ions 
o f   p l a t e  and beam elements were developed.  Effects  of  offsets w e r e  
incorporated  in   the  equat ions.  Elast ic  in s t ab i l i t y   unde r   un iax ia l  com- 
pression on composi te   re inforced  plates ,   s t ructural   sect ions  re inforced 
by  composites  and  beaded  st iffeners,   and  f inally,   st iffened  plates  rein- 
forced  by  composites were s tudied.  Buckled  shapes from eigenveFtor 
so lu t ions  are ca lcu la ted  which  can  be  used t o   a s c e r t a i n   l o c a l  and general  
type buckling modes. The accuracy   of   the   ana lys i s   and   the   aesoc ia ted  
computer programs were checked f.irst by correlation  with  corresponding 
i so t ropic  plaLcs,  sec t ions  and Htiffened plattee, t h e n  ca lcu la t ions  were 
extended t o   s e c t i o n s  and s t i f fened  plates   with  composi tes .  l%e corres- 
ponding  computer  programs are described i n  the  fol lowing documents: 
(Refs.  lYa,b,c) -- BUCLAP - Program Documents for  Buckling  Analysis  of 
Laminated  Composite P la tes ;  -- BUCLAS - Program Documents f o r  Buckling 
Analysis  of Composite Reinforced  Structural   Sect ions;  -- BUCLASP - 
Program Documents for  Buckling  Analysis  of Composite Reinforced  Stiffned 
Plates .  It i s  expected  that  these computer  programs w i l l  be   d i s t r ibu ted  
to   the   publ ic   th rough COSMIC, NASA's computer  program d i s t r ibu t ion   po in t  
at the  University  of  Georgia. 

"he main t e x t   o f  the report  which contains   the  general   theory  and 
der ivat ions and co r re l a t ions   w i th   ex i s t ing  analyses and tests i s  a com- 
p l e t e  document. Some peripheral   equat ions and co r re l a t ions  of  Secondary 
importance,   together  with  details   of geometry of test  specimens, are 
conta ined   in   the  Appendix  which, void  of  Nomenclatures  and accompanying 
f igures ,   should  be read together   with the  main text fo r  a complete  under- 
standing. 
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4. BASIC EQUATIONS 

The first pa r t   o f  t h i s  sec t ion   descr ibes   the   var ious  material and 
geometric  constants  used i n   t h e  analysis. N e x t ,  the   bas ic   equa t ions  
for   or thotropic   laminated f lat  p l a t e s  and  laminated beams, which w i l l  
be used i n  the buckl ing  analysis   of   sect ion 5, are presented. 

P l a t e s  conmosed of or thot ropic  laminas 
I n  the  following  derivations,   each lamins  is wsumed to  be in a skate 

of plane stress. r an   or thot ropic   l amina ,   the   s t ress -s t ra in   re la t ion-  
sh ips  are given by’ Fe : 

where the   superscr ip t  k denotes  lamina number and the  e l a s t i c   cons t an t s  
are given by 

k 
Q, = El l / ( l  - w ~ ~ w ~ ~ )  

&22 = E22/(1  - u ~ ~ w ~ ~ )  
k 

(4.2) 

The x, y, and z axes f o r  the present   o r tho t ropic   p la te  are aaeumed t o  be 
i den t i ca l  wi th  the pr inc ip le   d i rec t ions   o f  the laminates 1, 2 and  3, 
respect ively as s h m  in  Figure 4.1. A distance zn loca tes  the  neu t r a l  
plane  with  respect   to   an  arbi t rary  reference  plane.   This   neutral   p lane 
is determined by ca lcu la t ing  t h e  resu l tan t   o f   the   un iax ia l   forces   in  the 
laminas  for a constant and uniform  s t ra in   across   the  thickness .  

Thus 9 

where Sll is the first element  of  the  matrix [&id I”, where [QiJ 1,  being 

associated  with  kth  lamina, is g iven   i n  Eq. (4.1). 

k k k 
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For an orthotropic  laminated flat plate ,   the   s t ra in-displacement   re l -  
t ionships  are 

where z = distance from the   po in t   t o   neu t r a l   p l ane ;  u, v,  and w are the  
displacements  of  the  neutral   plane.  

Subst i tut ion of' Eq. (4.4) i n  Eq. (4 .1 )  and integrat ing  over   the  thick-  
ness   of   the   laminas,   the   s t ress   resul tants  N and couples M a c t i n g   i n   t h e  
neutral   p lane of t he  p l a t e  can  be  expressed  in  terms of  neutral   p lane 
displacements u, v and w as : 

B1l B12 0 

B12 B22 

0 0 B66 

0 

B1l B12 

B12 B22 

0 0 

D12 

D?2 
0 

0 

0 

D66 

[ :;:+J 

U 

(4.5) 

where t h e  A, B, and D coeff ic ient   matr ices   def ine  the  overal l   extensional ,  
coupl ing  and  bending  s t i f fnesses ,   respect ively,   of   the   laminated  or tho-  
t r o p i c  flat p l a t e .  F'igure 4.1 shows a l s o   t h e  sign conventians. 
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The elements  of the  A, B, and D matrices are given by14: 

tk (4.7) 

where h i ,  shown in  Figure 4.1, i s  t h e  d is tance  from the   neut ra l   p lane  t o  
t h e  surface  of  the respective  lemina ( h i  = hk - en) .  It i s  t o  be  noted 
that the B matrix i s  respons ib le   for  the coupling  between  the membrane 
stresses and the  bending  of the  neutral   plane.   For  symmetrically  laminated 
o r tho t rop ic   p l a t e s   i n  which the mid-plane i s  the  neutral   p lane,   matr ix  B 
vanishes and coupling  does  not  exist .  

If t h e  or ien ta t ions   o f   the   f ibers   o f  a lamina are no t   pa ra l l e l   o r   pe r -  
pendicular   to  the axes of   t he   p l a t e ,   t he   p l a t e  is anisotropic .  Then t h e  
A, B, and D mat r ices   in  Eqs. ( 4 . 5 )  and (4.6) w i l l  be fu l ly   popula ted  and 
the  quan t i t i e s  ( Q ~ J )  should  be  replaced  by  their  corresponding  transformed 
quant i t ies   (des igna ted  as ( q i j ) k  i n  wf. 1 4 )  i n  Eqs. (4.7) t o  (4.9). Since 
the  present   s tudy   involves   p la tes ,   s t ruc tura l   sec t ions  and s t i f f e n e d   p l a t e s  
with  uniaxial   or thotropic  laminas only,   these  anisotropic   equat ions are not 
given here. They can be found,  for  example,  in R e f .  14 .  The spec ia l ized  
s t i f fnes s   ma t r i ces  A, B and D (Eqs .  (4 .5)  and (4.611, however,  can be used 
t o  approximate the behavior   of   anisotropic   plates .  For  example, when skewed 
laminas are symmetric t o  t h e  middle  plane  of t h e  p l a t e ,  skewed or thot ropic  
laminas  can  be  malyzed  in  the  present  analysis  because  these  skewing 
constants ,  such as A16,  B16, D16, e tc . ,   appear ing   in  Eqs. (4.5) and (4.6) 
would be  e i ther   zero  or   very small compared w i t h  A l l ,  E11 and D u ,  e tc .  
and  can be neglected.  This  approximation  usually  requires the exis tence of 
several a l te rna t ing   angle   p l ies  i n  t h e  laminate. 

Orthotropic  laminated beams 

and l o i n t s  wi th  f i l l e t .  such as corners   o f   ex t ruded   s t ruc tura l   sec t ions ,  
Beads o r   l i p s   i n   s t r u c t u r a l   s e c t i o n s ,  bemn-type boron  reinforcements 

can ;e idea l ized  as be&  and treated i n  the  analysis .  The o r ig in  of  coordi- 
nates  of i t s  cross   sec t ion  i s  chosen, f o r  convenience, a t  the geometric 
cen te r   o f  the sect ion.  The bas i c  material properties  involved are the 
individual  lamina  constants,  Et1 and %3 fo r   t he   k th  lamina. 

~~ ~ 

The o v e r a l l  stifmesses considered-for the laminated beam-type elements 
are E11 'yy ' E11 IZ, '  E11 r , EU %, Q Ip and G23 J. These are estimated 

i n  an approximate manner as follows: 
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where F denotes Iyys l Z z s  I' o r  % (I= k und are momenta of inertia 

about   the  neutral  a x i s  of t h e  beard, and 
YY 

a - 
a 1  = 1 + I k  * k-1 P 

The above equations  are  based on t h e  assumption that p l ane   s ec t io  s of 
the beam cross   sec t ion  remain  plane  during  deformation. Fk and T, f o r  
each  lamina  are  calculated w i t h  r e spec t   t o   t he  axes chosen at the  geo- 
metric  center  of the  ove ra l l  beam sect ion.  The mi fo rm compressive stress 
i n  kth lamina due t o   t h e   e x t e r n a l  axial load,  denoted as 3k, is  ca lcu la ted  
on the assumption t h a t  the axial s t r a i n  i s  t h e  same i n  all laminas. 

The o v e r a l l   t o r s i o n d   s t i f f n e s s   o f  beams whose sec t ions  are made of 
concentr ic   c i rcular   layers   or   concentr ic   rectangular  box-type l aye r s  can 
be  expressed as 

(4.12) 

For beams whose cross   sect ion is rectangular  and i s  composed of layered 
t h i n   p l a t e s  , Eq. (4.12) would not   be  appropriates   s ince  each l d n a  deforms 
w i t h  a d i f fe ren t   eccent r ic i ty   towards  t h e  shear center  of  t he   ove ra l l  
sect ion.  kl lacking an exac t   to rs iona l   s t i f fness   express ion   for   l ayered  
composite  rectangular  eectione , trle l u l ~ o r i n y  approxiwte equatiw llus 
been  used: 

where A t  i s  the   c ross   sec t iona l  area o f   t he  kth layer.  Physical  proper- 
t ies  of t hese   c i r cu la r  and rectangular   cross   sect ion beams can  be found 
i n  Refs. 1, 1 5 ,  16 and 17. 

Equilibrium  equations  and  boundary  conditions 

force   resu l tan ts  Nll,  N22 and shear   resu l tan t  N12, can  be  written as: 
The equilibrium_  equztions  for a f la t  plate under  in-plane  compressive 

- aNll aN12 

-+"' aN22 aN12 

ax aY + - -  - 0  

aY ax 
- 0  

(4 .14)  

The corresponding  boundary  conditions , say, at ends  along y-axis, are 
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c 
av 
ay = O  o r  M22 = 0 

u = o  o r  N12 = 0 

N22 = O v = O  or 

The equi l ibr ium  equat ions  for  t h e  ltuninatsd beama are derived fro- ele- 
mentary beam theory   i n  which the  axial load pb due t o   e x t e r n a l l y   a p p l i e d  
force i s  ac t ing  on t h e  neu t r a l  axis and no e c c e n t r i c i t y  is  involved. Con- 
s ide r ing  a beam under  torsion plus axia l  and lateral  l o a d e ,   t h e   i n t e r n a l  
forces (Fig. 4 .2)  at any sec t ion  of t h e  beam can be   wr i t ten  i n  terms of  
the  appl ied  loa& and displacements  u,* 

= E I ( d  4 4  w/dx ) + Fb(d2w/dx2) qz 11 ;w 

3. = EllIZz(d 4 4  v/dx ) + Fb(d2v/k2) 

where the ro t a t ion  8 of   t he  beam i s ,  i n   f a c t ,  the same 88 the   s lope  w 
at the edge of t h e  p la te .  *Y 

I n  t h e  present   analysis ,  beam element will always be  continuously and 
e la s t i ca l ly   connec ted   t o  t h e  edge  of a p l a t e   t o  form a s t i f f e n e r .  Conse- 
quently,  t h e  boundary  conditions  applicable  to beam elements are: 

where the  right-hand sides are given i n  Egs. (4.1'7s), (4.5) and (4.6). 
"he sign  conventions  are  such tha t  t h e  beam is supposedly  connected t o  
the   p l a t e  a t  y = b i n  Fig. 4.1. 

5. BUCKLING ANALYSIS 

The equat ions  der ived  in   sect ion 4 w i l l  b e   a p p l i e d   i n  t h i s  s e c t i o n   t o  
the  buckl ing  analysis  of (a)  or thotropic ,   laminated,   rectangular   plates  
and (b)  s t ruc tura l   sec t i .ons  and stiffened  plates  buil t-up  from  laminated 
p l a t e s  and beams. In the present   l inear   theory,  the prebuckling deforma- 
t i ons  and poss ib l e   i n i t i a l   imper fec t ions  are ignored. The buckling  load 
is defined as the  smallest load at which a par t  of the s t r u c t u r e   ( l o c a l  
i n s t a b i l i t y )   o r  the whole of t h e   s t r u c t u r e   ( g e n e r a l   i n a t a b i l i t y )  starts 
t o  develop  out-of-plane  displacements  (w-displacement)  and a a t a t e  of 
unstable equi l ibr ium  ex is t s   cons is ten t  with t he   cons t r a in t s  on the edges 
o f   t he   s t ruc tu re .  



5.1 Orthotropic Laminated P l a t e  Under Uniaxial Colnprassioa 

The promant  mcthod rcqulrcr  fit leeet two opposite ed-r of the rectarr- 
gular plate   to   be  s imply  supported so that   var iables   can  be  separated i n  
the different ia l   equat ions  of   equi l ibr ium. A set of   d i sp lacemnt   func t ions ,  
automatically  satisfying  the  boundary  conditions  along  these  simply sup- 
ported edges, are assumed. The boundary  conditions on the   o ther  two edges 
are enforced i n  the  buckling  formulation.  Substi tution  of  the  displacement 
funct ion6  in   the  equi l ibr ium Eqs .  (4 .14)  t o  (4.16) l eads   t o   t he   cha rac t e r -  
i s t i c   equa t ion   o f   t he   d i f f e ren t i a l   equa t ions  which in general is a polynomial 
of @h  degree.  Corresponding t o  each  given  load  there  are  eight  roots from 
tn i s   cha rac t e r i s t i c   equa t ion .  The displacements and the  forces   der ived 
from them which are functions  of  these  roots are then  used t o  enforce  the 
eight  boundary  conditions  of  the two remaining  edges.   This  results  in a 
set of  eight homogeneous simultaneous  equations. A buckling  load  corres- 
ponding t o  each axial wave  number is  obtained  from  these  equations  by 
determining  the minimum value  of   the  load  for  which the  determinant  of 
the  coeff ic ient   matr ix  becomes zero. The buckling  load is t h e  smallest 
of  such  loads  from  varying  the axial wave numbers. When all four  edges 
of the  plate   are   s imply  supported,   the  assumed displacement  Functions 
au tomat ica l ly   sa t i s fy  all the  boundary  conditions,  and  the  buckling  load 
i n   t h i s   c a s e  is obtained  in  a closed  form from the  equi l ibr ium  equat ions.  

Plates   with two opposite sides simply  supported  and  the  other two sides 
e l a s t i c a l l v   r e s t r a i n e d :  

appl ied  a long  the  direct ion of x-axis, on two paral le l  simply  supported 
edges of width 'b; t he   o the r  two unloaded  sides, o f  length a, a r e   e l a s t i c a l l y  
res t ra ined .  The four  sides a r e  x = 0 and a, y = -b/2  and  +b/2. kt 
, G, & be   t he   t r ans l a t iona l   s t i fmesses   and  kg t h e   r o t a t i o n a l   s t i f i n e s s  

o the   e l a s t i c   r e s t r a in t s .   Supe r sc r ip t s  + and - are   used   to   denote   the  
s t i f f 'nesses  and displacements along t h e   s i d e s  y = -b/2 and +b/2  respectively. 

As an examplz, assume t h a t  a unidirectional  compressive  load zl1 is 

9 
Displacement  functions assumed are  : 

a = mrrx/a 

B = Pi"Y/b 

The assumed displacements  satisfy  the  simply  supported  edge  conditions,  
w = Mll = Nll = v = 0, along x = 0 and a. The conditions a t  y = -b/2 a11d 

+b/2 are  : 
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y = -b/2 y = .+b/2 

( i )  Q22 -17 ";; (i) QZ2 = w+ k: 

(ii) %2 = w:y ki (ii) B$2 = -w+ k: 
SY 

(iii) N12 = -u- k; (5.2) (iii) N12 = u kU + +  (5.3) 

(iV) 122 -v- ki ( i v )  NZ2 = v+ k: 

When a typical   term of the  displacement  functions is  s u b s t i t u t e d   i n t o  
the equilibrium Eqa. (4.14) t o  (4.16), and  through t h e  a i d  of Eqs. (4.5) 
and (4.6) one obtains  : 

R12 [ z  R~~ [ :) = 0 

"'13 

R31 R32 "R33 

(5.4) 

Expanding the  determinant  equation of Eq. ( 5.4) one obtains  a polynomial: 

The above eqpat ion  thus  yields  eight value6  of p i ,  which are real o r  complex 
conjugates and four   roots   are   the  negat ive  of   the  other   four .  
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From Eq. (5.4) , Ui and Vi i n  Eq. (5.1) can be  expressed i n  terms of 
W. as: 
1 

ui = lrL2i wi 
vi = "Lli wi (5.7) 

where 

R23R11 - R13R21 

22 11 Lli A R ~ ~ R ~ ~  - R R i = 1, 2, ..., f 

(5.8) 

i = 1, 2,  ..., 8 

The boundary conditione  along  the  edges y = *b/2 can now be enforced. The 
displacement  functions,  with t h e  e ight   p i   va lues  from Eq. (5.6) are subst i -  
t u t e d   i n t o   t h e  eight boundary  conditions ( E q s .  (5.2)  and (5.3))  with t h e  
a i d  of Eqs.  (4.5) and (4.6).  Eliminating U i  and V i  th rough  the   use   o f  
E q s .  (5.7), one  obtains eight homogeneous simultaneous  equations  in W i  
( i  = 1 t o  8) o f   t he  form [ % I  { W i  1 = 0. These  equations are satisfied if: 

where l%I i s  the  buckling  determinant formed  by t h e   c o e f f i c i e n t s   o f  Wi. 

"his 8x8 determinant  can be wr i t ten  as 

exp ( mi/2)  LGli - kw/n  1 

exp  (rrpi/2)[G2i + kl(pi/ lrb)l  ..... 
exp  (api/2)[Gji - k;Lzi/n 1 ..... 
exp  (npi/2) CGbi - k=Lli/rJ ..... 

+ 3  ..... 

I e x p   ( 7 p i / 2 )  [G4i + kiLli /n]  . . . . . 

= o  

i = 1,2,3,. . . ,8 

14 



where 

S ince   the   p i   va lues  are funct ions Of t h e  external load  Ell and t h e  
p a r t i c u l a r  axial  wave Lumber, a closed form so lu t ion  i s  not  possible and 
the   c r i t i ca l   va lue   o f  N11 has t o  be  determined  by an i terat ive method. 
For  an assumed axial mode m and f o r  an assumed value of 311, t h e  p i  values 
from Eq. (5.6) a r e   s u b s t i t u t e d   i n t o  Eq. (5.10). If the   va lue   o f   the  
determinant i s  not   zero,   the   load i s  i n c r e a s e d   i n   s t e p s   u n t i l  Eq. (5.10) 
is  sa t i s f ied .   This   load   then  i s  the   buck l ing   l oad   fo r   t he  assumed axial 
mode m. The ca lcu la t ion  is  repeated  for   var ious  values   of  m and t h e  
minimum of a l l  such  values i s  the  buckling  load. 

Simplif icat ions  are   possible   for   plates   with  zero  bending-stretching 
coupling, i .e.  BiJ = 0 (Eq. (4 .8 ) )  and,  consequently, u and v a re  indepen- 
dent  of w and Eq. (5.10) i s  reduced t o  a 4x4 determinant. 

The c r i t e r i a  of  buckling  can  be  given  in  terms  of  cri t ical  s t ra in  o r  
c r i t i c a l   l o a d   i n t e n s i t y .  For   composi te   re inforced   s t i f fened   p la te ,   the  
c r i t i c a l   l o a d  per uni t   length is di f fe ren t   for   d i f fe rn t   p la te   e lements  
f o r  uniform axial shor t en ing ,   wh i l e   c r i t i ca l   s t r a in  i s  constant  throughout 
t he   s t ruc tu re .  The c r i t i c a l   s t r a i n  assuming tha t   t he   app l i ed   l oad  is  
dong x, i s  defined as the  uniform axial s t r a i n  i n  Eq. ( 4 . 1 )  at the 
in s t an t  of buckl ing  such  that   the   or thogonal   s t ress  uk i n   t h e  kth  lemina, 
w d  all the  other  laminas,  is zero  while  the sum of the axial stress 0 5 ,  
through  the  thickness o f  the   p la te , i s   equa l   to   the   appl ied   un i form l i n e  
load 811. Thus, by inve r t ing  Eq. ( 4 . 1 )  and pu t t ing  a$ and u& equal t o  
zero,  one a r r ives  at an e x p r e s s i o n   o f   t h e   c r i t i c a l   s t r a i n  

If one assumes tha t   the   o r thogonal  stress re su l t an t  N22 i s  zero,   ins tead 
o f  lamina stress uk in  each  lamina i s  zero,  one a r r ives  at t h e  more familiar 
equat ion   for   o r thoxropic   p la te  

These two equations w i l l  produce  the same c r i t i c a l   s t r a i n   c r i t e r i a   s i n c e  
prebuckl ing   deformat ions   a re   igored   in   the   p resent   ana lys i s .  
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Since  der ivat ions are similar, equations  for  buckling  of  composite 
p l a t e s  with o ther  boundary condi t ions are co l l ec t ed  i n '  the Appendix  of 
t he   r epor t   fo r   r e f e rence ,  and w i l l  not  be  presented here. 

5.2 Orthotropic   Laminated  Structural   Sect ions  and  St i f fened  Plates  Under 
Uniaxial Compreesion 

In  the   p re sen t   ana lys i s ,   s t ruc tu ra l   s ec t ions  and s t i f f e n e d   p l a t e s   o f  
uniform  cross-section are considered  to   be  assenbled from or thot ropic  
laminated  f la t -plate   and beam elements. 

"he in t e r sec t ing   ang le  between  elements  can be a r b i t r a r y  and junct ions 
of  elements  and  unloaded  edges  can  be  elastically  restrained, clamped, 
simply  supported  or  free.  However, the  loaded  edges  of the  elements 
have t o  be simply  supported so tha t   var iab les   in   the   equi l ibr ium  equat ions  
can  be  separated.  For  each  element, the assumed buckiing  displacement 
functions  automatically  satisfy  the  simply  supported  boundary  conditions 
along  the  loaded  edges.  Consequently, a l l  elements  have  the same axial 
mode (wave-length).  These  simply  supported  edges  of a cross-section 
where the   l oad  i s  applied  provide a l i ne   suppor t   fo r   t he  p1af.e elements 
and a point   support   for   the beam elements. 

Substitution  of  displacement  functions  such as Eq. ( 5  .l) i n t o   t h e  
equi l ibr ium  equat ions   for  a lamina ted   f la t   p la te ,   Eqs ,  (4 .14)  t o  (4.16) , 
leads t o  a characterist ic  equation  for  each  element  such as Ey. (5.6) , 
which in   genera l  is a polynomial of  8th  degree.  Corresponding  to  an 
assumed uniform axial s t r a i n   o r  an a r b i t r a r i l y   v a r i a b l e   l o a d   i n t e n s i t y  
from  element to  element,   but  uniform  in  each  element,   there i s  a set  of 
roots  from th is   charac te r i s t ic   equa t ion   for   each  f l a t  plate  element.  
For t h e  beam elements, the  buckling  displacements are simple  trigonometric 
fhnc t ions   in  the axial  ( longi tudinal)   coordinate .  The displacements 
assumed are the  t r ans l a t ions   (u ,  v, and w) and t h e   r o t a t i o n  ( e )  about 
the   longi tudina l  ax is .  The enforcement  of  the  continuity  and  equilibrium 
requirements  along common element  junctions results i n  a s e t   o f  homo- 
geneous , simultaneous  equations. A buckling  determinant i s  formed  from 
t h e  coeff ic ient   matr ix   of  these equations. As usual ,   the   buckl ing  load 
of t h e   s t r u c t u r a l   s e c t i o n ,   o r   t h e   s t i f f e n e d   p l a t e ,  i s  the minimum load 
value among a l l  modes (axial wave numbers) t h a t  make the  determinant 
vanish. 

It i s  t o   b e   n o t e d  that these  buckl ing  loads  and  their   e igenvectors  
are determined  from a l inear   exact   buckl ing  analysis .  Except f o r   t h e  
a x i a l  wave number, t h e r e  is  no  need t o   s t i p u l a t e  a "mode" i n  its usual  
sense.  Eigenvector  plots can be  used to   indicate   whether   the  buckl ing 
deformation is loca l   o r   genera l .  I n  con t r a s t ,   t he   c l a s s i ca l   buck l ing  
ana lys i s   usua l ly  assumes one o f  the fol lowing  individual   buckl ing  mdes,  
i n  what i s  commonly  known f l exura l   (Eu le r )  mode, t o r s i o n a l  mode, l o c a l  
mode, coupling mode, e t c .  Such s impl i fy ing   r e s t r i c t ions  may r e s u l t   i n  
missing the lowest  'buckling  load. 
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dlement idea l i za t ion  of s t ruc tu ra l   s ec t ions   and   s t i f f ened  plates 
As a t y p i c a l  example,  consider t h e  arbitrary s t r u c t u r a l   s e c t i o n  shown 

i n  Figure 5.1. H e r e  Y, Z are the  global  axes (X-axis coincides   with  the 
axis of the  sec t ion  or the s t i f f e n e d   p l a t e )  and y ,  z axes are t h e  local 
coordinates  of  each component element.  Local  coordinates are chosen at 
the  geometric  center of  beem elements  and  neutral  planes of plate  elemcnta. 
The clash-line  contour i n  Fig. 5.1 ehowe t h e  boundary  of t he   c ros s   s ec t ion  
of the  s t i f f e n e d   p l a t e ;   t h e  so l id  l i n e   i n   t h e   i n t e r i o r  is t h e   n e u t r a l  
plane  of  each  segment,  from  which  offsets  between  neighboring  elements 
are t o  be measured. The posi t ion  of   the  neutral   p lane  can be ca lcu la ted  
from t h e  mid-plane  and Eq. ( 4 . 3 ) .  
Elat plstc element-forces and displacements in loca l   coord ina tes  

Consider a typ ica l   c ross   sec t ion   of   an   o r thot ropic   l amina ted  f lat  
plate  element as shown i n  Fig. 4.1. The ax is  y is  placed at the  middle 
of the p la te .  The forces  and  displacements  along the edges  y = *b/2 
are in i t ia l ly   de te rmined  w i t h  r e fe rence   t o   t he   neu t r a l   p l ane .  The forces  
involved are : 

SY 

The  displacements  involved are : 

w ,  u ,  v and w 
SY 

The o v e r a l l   s t i f f n e s s e s  A i J ,  Bid and D 
t o  ( 4 . 9 ) .  i J  

Assuming t h a t  the  coupling  matrix B 
displacements are s t i p u l a t e d  as : i d  

a 8 
u = 1 e' W. s i n a  = 1 wi wi s ina  

i=l 1 i=1 

(5.13) 

are evaluated as per Eqs.  (4.7) 

8 a 
v = 1 nLlie' W. s i n a  = 1 pi wi s i n a  

i=l 1 i=1 

and then ,   by   d i f f e ren t i a t ion ,  

does not  vanish,  the  buckling 

b -  

where, 

a =  

in   these  equat ions,  

mnx/a B = nPiY/a 

(5.14) 
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and symbols q, 9i, O i ,  and P i  are self-evident.   Equilibrium  equations,  
Zqs. (4.14) t o  (4.16), are s a t i s f i e d  when P i  are the   roo ts   o f   the   charac-  
t e r i s t i c   e q u a t i o n ,  Eq. (5.6), and L l - ,  L2i are  given by Eqs.  (5.8). For 
t h e   p r e s e n t   a x i a l  compression  case, $11 is t h e  only buckling  load  involved. 

Using t h e  above displacements, the forces shown i n  Eq. (5.12)  are 
evaluated  through Eqs .  (4 .5)  and (4.6),  t h e   r e s u l t s   a r e  

8 

i=1 
= 1 ( n  ) w cosa 

12 i i 
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- B22(pi/a) }Win e s i n a  2 2 8  

a 
= 1 (n22)i wi s i n a  

i=l 

Similar  equations  corresponding t c  a p la te   wi th  u and v not  coupled 
w i t h  w (Bid = 0 )  w i l l  not  be  presented. These equations,   together with 
all such  equations which correspond t o  a p a r t i c u l a r  C a s e  o f   the   genera l  
case  derived here are c o l l e c t e d   i n   t h e  Appendix for   re fe rence .  

Transformations t o  the   re fe rence  plane 
The above forces  and  displacements,  which take the  neut ra l   p lane  88 

reference,  have t o  be t r a n s f e r r e d   t o  the l i n e  where interelement  matching 
i s  done. 

L e t  yo and zo be defined as the o f f s e t s  from an element  neutral  plane 
t o   t h e   l i n e  where interelement   cont inui ty  is  t o  be m e t .  These o f f s e t s  
are measured along the  l o c a l  axes, wi th   o r ig in   i n  t h e  neut ra l   p lane ,  as 
shown i n  Fig. 5.2, where forces  and displacements at point  B(y = +b/2) 
a r e   t o  be t r a n s f e r r e d   t o   p o i n t  S. The o f f s e t s  yo and zo s h a m  here are 
taken as pos i t ive ,  since they are i n  t h e  pos i t ive   d i rec t ions   o f  t h e  l o c a l  
axes. 

In  Fig. 5.2, the  axes a t  point S a r e   p a r a l l e l   t o   t h e   l o c a l   c o o r d i n a t e  
system y, z at point  0. The t raneformation  of   the  displacements  at B 
t o  S i s  purely a geometr ica l ,   r ig id-body  t ransfer ;   e las t ic i ty  between 
these two points  i s  neglected  s ince the d is tance  i s  small and  conse- 
quen t ly   t he   e f f ec t  would be of secondary importance. Thus, we have 
displacements at point  S i n  t e r n  of u, v and w at B: 

w = w + y o w  

es = (w = w 

s zo w,x + yo u,y 

s 'Y 

,Y S Y  

u 'U- 

v ' V - z  w 
8 c r Y  

The subscr ip t  s ind ica tes  the new displacements at poin t  S. 

(5.23) 
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Subs t i tu t ion  of Eqs. (5.14) t o  (5.17) i n t o  Eqs. (5.23) yields, for 
Bid f 0 s  

0 

i=l 
v S = 1 ( p i  - zo+i)Wisina 

O r  wr i t ten  in matrix form: 

tha t  is, 

In a similar manner, the   forces   a long   the  edge y = +b/2 when t ransfer red  
t o  a parallel edge  through S, become 
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and, f r o m  $qs. (5.19) t o  (5.22), the above equations become, f o r  Bid f 0, 

which  can be wr i t t en  i n  a matrix form: 

i .e.  

Ef,) = [x,] cq> 
fps> i6 self-evident.  

Equations ( 5.26) ~d (5.30) represent the four displacement8 and four 
stress r e s u l t a n t s ,   o r i g i n a l l y   a c t i n g  a t  y = +b/2, now t r a n s f e r r e d   t o  the 
Offset   point S (with p o s i t i v e   o f f s e t s  yo and zo) i n  t e r n  of t h e  displace- 
ments at the   neu t r a l   p l ene   o f   t he   p l a t e .  

F la t  plate element-forces  and  displacements in   global   coordinates  

its local   coordinates   y ,  z which makes a clockwise-psi t ive  angle  \cr with 
the  global   coordinates  X, Y,  Z. The subscr ipt  G r e f e r s  GO t h e  global 
coordinate and the   subsc r ip t  s i nd ica t e s   t he  '-xal. coordinate at point S. 

Figure 5.2 a l s o  shows the   neut ra l   p lane  AB of  a f la t  p l a t e   e l e m n t  and 
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Transformed t o  the global   axes ,   the  four displacements of Eqs .  (5.25) 
become : 

1,l 
X cos $ 

0 

0 

-sin$ 

sin$ 

0 

0 

cos $ 

[ ;] X 

s 

Equation  (5.31) can be  writ ten  simply 88 

I n  the   fo l lowing   tex t ,   superscr ip ts  + sild - w i l l  be  used with various 
matr ix   designat ions  ( for  example, SG, sG, 5, e tc .  ) t o   d i f f e r e n t i a t e  

the  corresponding  quantit ies at s ides  y = +b/2  and  y = -b/2  respectively,  
fo r   t he   f l a t   p l a t e   e l emen t .  Thus, when y i n  I3 of Eq. 5.18) i s  made t o  
be equal t o  +b/2, we sha l l  use [q] i n  Eq. (5.26)  and when y = -b/2, []i] 

becomes [Xi].  Consequently,  substitution  of Eq. (5.26) into Eq. (5.32) 

y i e l d s ,   f o r  BiJ # 0,  

Similar  t o  the  transformations of displacements, l o a d  coordinate 
forces   of  Eqs.  ( 5.29)  are  transformed  to  the  global  coordinates  by: 

i cos$ 

0 

0 

0 

0 

-1 

0 

-sin$ 

Let [Tf] represent   the  square t ransform  matr ix   in  Eq. (5.35). Subs t i tu t ion  
of Eq. (5.30) into  the  r ight-hand  s ide of Eq. (5.35) and  by  putting 
y = +b/2  and  -b/2  respectively, one obtains  the following  equations t o  
represent   the  plate   forces   in   global   coordinate:  

= [Tf][Xg]{R1) = [Xt]{Rl) y = +b/2 (5.36) 

if&} =-[Tf] [$]{R1} = [51{5} y = -b/2 (5.37) 
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Equations  (5.33), (5.34),  (5.36),  and (5.37) are displacements  and 
forces   in   g loba l   coord ina te  at t h e  edges y = +b/2  and  -b/2  of a flat 
p l a t e  element i n  terms of the  eight amplitude  constants W1 t o  w8 f o r   t h a t  
element. 

Beam element -- forces  and displacements i n   l oca l   coo rd ina te s  

i n  the longi tudina l   d i rec t ion .  The forces  and displacements  involved i n  
interelement  equilibrium and cont inui ty  are at f irst  determined  along t h i s  
l i n e  and then  transformed. The forces  involved  are': 

The beam elements are idea l ized  as a l ine   th rough their geometric  center 

9, ' dTx/dx @/a and % (5.38) 

The displacements  involved are: 

w ,  8 ,  u and v (5 .39 )  

The pos i t i ve   d i r ec t ions   o f  the  displacements and fo rces   w i th   r e spec t   t o  
the local   coordinate  are shown i n  Fig. 5.2. 

The buckling  displacements  are assumed as 

w = W s i n a  8 = 0 s i n a  v = V s i n a  u = U cosa  (5.40) 

where a is  e q u a l   t o  max/a as given i n  Eq. (5.18). These  displacements 
satisfy the simply  supported  conditions at x = 0 and x = a where the 
external  compressive  force i s  applied.  

Subs t i tu t ion   o f  Eqs. (5 .40)   into Eqs. (4 .18)   to   (4 .21)   yields  

dTx/dx = [Ellr(mn/a)4 + Gl,J(mn/a)2 - ;I (mn/a)  2 30 s ina  = 06, s i n a  
P 

dF'/dx = [Ell%(mn/a) 2 ]U cosa = U 5 cosa 3 

3. = [EUIZ,(mn/a) - Pb(mn/a) IV s i n a  = V F4 s i n a  4 -  2 

Similar t o  the f lat  plate elements, the  transformation of force and 
displacement at the geometric  axis  of the beam t o  the  offset axis can be 
done purely on geometric  considerations.  Figure 5.2 can a lso  be  used t o  
show t h e  of fse t  axis S and the  geometric  axis 0 o f   t h e  beam with  point 0 
being moved t o   p o i n t  B. 
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The displacements of Eq. (5.39) when t r a n s f e r r e d   t o   t h e   o f f s e t  axen  
become : 

w = w + yo8 
eo - e 

S 0 ,x - yov,x 
v = v - zoo 

B 

u ' U - z w  

8 

(5.42) 

where the subscr ipt  a refers t o  t h e  qffset axis at S. After subs t i t u t ion  
from Eq. (5.40), t he  above equations become: 

0 0 s i na  

0 0 

0 
0 

0 s ina  0 "z s i n a  
0 (5.43) 

or, writ ten symbolically. 

whcre [ x f i ]  I s  a 4x4 matrix.   Similsr ly .   the  forces can be transformcd t o  
t h e  offset   axes  88 

(5.45) 

The d o v e  equations,  on subs t i t u t ion  from Eqa. (5.41) , becars: 

or ,   wri t ten  symbolical ly ,  as (5.46) 
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where [%] is a 4x4 matrix and I t a  elementr are functione of t h e  external 
load pb on the  beam element. The displacemsnts and forces of a beam 
element with r e spec t   t o   t he   o f f se t   l i ne   a r e   t hus   g iven  by Eqe. (5.43) 
and (5.46) respect ively.  The posi t ive  direct ions  of  these are t h e  sane 
as those  indicated  in   Figure 4.2. 

Beam clement - forces  and dirplacsmantr i n  Rlobal c o o r w  

i n  r e l a t i o n   t o  the local   axes  y and Z of t h e  beam whare t h e   l o c a l  aXi8 
of y makes an angle 3r with   the   g loba l  Y axis. 

Figure 5.2 can a lso  he Used to show t h e  global coorbinrtem X, Y, and Z 

Using  subscript G t o   i nd ica t e   t he   quan t i t i e s   w i th   r e spec t   t o   t he  global 
axes, the four displacements of Eqs. (5.431, after transformation, become 

= [!I] 
S 

G 
V 

8 

or 

(5.48) 

= [Tdl {%B} (5.49) 

where the  transformation  matrix  [Td] is t h e  same as i n  Eq. (5.32).  dubsti- 
t u t ing   fo r  {dgs 1 from EQ. (5.441, t he  above equation  can  be  written as: 

Using the cont inui ty   condi t ions  of  Eqs. (4.22) t o  (4.25) .   the  global 
forces   act ing on the  beam from t h e   p l a t e  side, whose pos i t ive   s ign  conven- 
t i on  i s  shorn  in  Fig.  5.2,  can  be  expressed  by 

{fBG 1 = [T 1 ifBs 1 (5 .521 

where the  t ransformation  matr ix  [Ti] is t h e  samc M t h a t  in Eq. (5.35). 
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S u b s t i t u t i n g   f o r  { fBs) from Eq. (5.471, t h e  above equation becomes 

(5.53) 

where [%I i s  a 4x4 matrix. 

Thus, { and ifBG) as given  by Eqs . ( 5.50)  and ( 5.53) respec t ive ly ,  
give  the  displacements and forces   o f   the  beam element at o f f s e t  S with  
respect  to  the  global  system. 

Figure 5.3 shows a t y p i c a l   j o i n t  where t h r e e   p l a t e  elements join 
together with a beam element. The global  coordinates  and  local  coordinates 
of  each  element are shown in   t he   f i gu re  where  dash l i n e  illustrates the 
ou t l ine  of t h e  sect ion.  For the  beam element, B is i t s  geometric  center; 
fo r   t he   p l a t e   e l emen t s ,  mid-plane  can  be t a k e n   i n i t i a l l y  as the   re fe rence  
plane  for  convenience  in  measurements,  however,  position  of  neutral  plane 
(shown i n  Fig. 5.3 as y-axis) should be   ca l cu la t ed   s ince   o f f se t s  and i n t e r -  
element  matching  of  continuity are being done based on neutral axes. 

Angle Jt i s  pos i t i ve  when measured  clockwise  from Y-axis t o  y-axis of 
the  individual  element.  For t h e  purpose  of i l l u s t r a t i o n ,  le t  B be  chosen 
as t h e   o f f s e t   a x i s  on which inter-element  matching w i l l  b e  done. Conse- 
quent ly ,   the  beam element wi th  center  at B has no of f se t .  

The forces  and  displacements  of  the f la t  plate   e lements ,  after t rans-  
formed t o   t h e   o f f s e t   p o i n t  and converted  to  the global  coordinates,  and 
those of t h e  beam elements which are a l r eady   i n  global coordinates,  are 
shown i n  Table 5.1. 

Table 5.1 
Forces  and  Displacements i n  Inter-Element  Matching 

at the   Junc t ion   i n   F ig .  5.3 

Element No. Force end Displacement  Equation No. 
Expression 

.~ ~~ ~ 

r 

{ fpc’ 5.37 
5.34 

r 
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As far as external   loads are concerned, a junction of elements will 

(a) free from external l o a h  
(b) e l a s t i c a l l y   r e s t r a i n e d  
(c) clamped 
(a) simply  supported 

belong t o  one of the  fol lowing  cases:  

Detail ca lcu la t ions  of t h e  first two cases will be  given as examples. 

(a) Free  Junction of elements 

s t ra in ts ,   fo rce   equi l ibr ium at B y i e lds  
Consider   the  joint  shown i n  Fig. 5.3 ,  since  there  are no ex terna l  c m -  

and  inter-element  displacement  continuity  requirements  yield 

(5.54) 

where the   subscr ip ts  1, 2, 3 and 4 w i t h  parenthesis   indicate   the  e lement  
number. These four  equations,  Eqs.  (5.54) and ( 5 . 5 5 ) ,  af’ter us ing   the  
appropriate equations as shown in  Table 5.1, can ‘be wr i t%en   i n  a matrix 
form: 

where the  rectangular  matrix i s  of t h e   s i z e  1 6  

(b) Elas t i ca l ly   r e s t r a ined   j unc t ion  of elements 
k t  4rG, sG,, kWG and kS be the  four   spr ing  constants  o f  t he  restraints 

i n  the   d i rec t ion  X, Y ,  Z and OG (Fig.  5.3) along  the  inter-element   junct ion 
l i n e .  The appropriate   res t ra ints   can be found 85 
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a t  the  end of p l a t e  No. (1)  transformed t o   t h e  offset, po in t  B i n  global 
coordinates.  The choice of t h e  No. (1) p l a t e  is arbi t rary  s ince,   through 
Eqs. (5.55), all elements  have  the same displacements at tha t   po in t .  

Subs t i tu t ion   o f  Eq. (5.34) i n t o  Eq. (5.57) y i e lds  

which is  t he   ex t e rna l   fo rce  to  be added to   the   equi l ibr ium  equat ion  of 
t h e   J o i n t  88 given  in  Eq. (5 .54) .  The cont inui ty   equat ion is t h e  same 
as Eqs.  (5.55). Consequently, one needs  only t o   r e p l a c e   t h e   m a t r i x  element 

[%I (  1) by [ql(l) RGJ 
r e s t r a i n e d   j o i n t  . 

+ E [SI(,) i n  Eq. (5.56) f o r   t h e   e l a s t i c a l l y  

Boundary conditions along any unloaded flat plate element 

clamped or  simply  supported.  The constraints  and  the  displacements w i l l  
be   r e f e r r ed   t o   t he   neu t r a l   p l ane  of t h e   p l a t e .  

The unloaded f la t  plate  element  can  be free,  e l a s t i c a l l y   r e s t r a i n e d ,  

By pu t t ing  JI = yo = z, = 0 in  appropriate  equations,   displacements  and 
forces  at e i the r   end   o f  a plate  element can  be  obtained in   g loba l   coord ina tes .  

(a)  Free  edge 

Cfi,) = 0. From Eqs. (5.36) and  (5.371, we have 
Since  forces  a t  a free edge  should  vanish,  one  obtains {fpG} = 0, or + 

= O  0 

y = +b/2 

JI = y o = z o = o  

y = -b/2 

( b )  E l 8 S t i C a l l Y  r e s t r a ined  edge 
S i m i l a r   t o  Eq. ( 5 . 5 8 ) ,  l e t  b~ be the diagonal  matrix whose elements 

are the  spr ing  constants   a long  tn   neutral  a x i s  in   global   coordinates ,   then 
the  edge conditions are 

- 
- y o = z  0 = O  

= +b/2 

o r  (5.60) 
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I 

equations  concerning  in-plane  displacements -or forces ,  ce. , u or N12 
= 0 and Y or  N22 = 0. If u = 0 and v = 0 are chosen, for  exemple, t h e  
cl-d edge conditions w i l l  have t h e  same expression as Eq. (5.59) 
except   tha t  Xl, is  replaced by X3. If u = 0 and N22 = 0 are chosen, Eqs.  
(5.14).  (5.15).  (5.16)  and  (5.22)  should be used  which w i l l  lead t o  a 
4x8 matrix designated by a new notat ion,   say 

(d )  simply S U D D O r t e d  edge 
The clsaaical   simple  support   Conditions are w = %2 = u = N2 = 0.  

If these four conditions are chosen, E q s .  (5.1b). (5.20). (5.157 and 
(5.22) w i l l  lead t o  a 4x8 matrix,  designated by 

For convenience o f  reference,  equations  for  inter-element  matching 
end  end  conditions are c o l l e c t e d   i n  Table 5.2. 

Table 5.2 
Collection of F l a t  P l a t e  and Beam Element  Equations for  

Inter-Element  Matching and End Conditions (B # 0 )  kl 
Force or Equation  Equst  ion  Size of Rcmark 
Displacement No. Matrix [X] 

{4G} = [x;] (H1 1' 5.33,5.34 

{ fiG} = [xqfl{ql 5.36.5.37 4x8 p la t e   fo rce  

4x8 p l a t e  
d i  splaccmcnt 

{$GI = '[X,ICR;?)  5.50 4x4 displacement 

Cf,,) = [x81{%} 5.53 4x4 beam force  

[X',lCly = 0 5.59 4x8 free end 

( [ X i ] + k  [X;l){R1P0 5.60 elastically 

[ s ] { R l } = O  o r  [X9]{R1}=0 5.61 4x8 clamped end 
REI 4x8 restrained  end 

f 

5.62 4x8 simply supported 
end 
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5.4 Equation8  for  Buckling  of  Structural   Sections and St i f fened   P la tes  

The buckling  equation for  the   p rev ious   s t ruc tura l   sec t ion   under   un iax ia l  
compressive  load w i l l  be obtained  by  matching  the  neighboring  elements 
together.  Assuming t h a t   t h e  l e f t  end of the   s ec t ion  shorn i n  Fig. 5.1 
is simply  supported  while the right end i s  clamped as def ined   i n  Eq. (5.61). 

Besed on equations  in  Table 5.2 and  Fig. 5.1, one obta ins   the   fo l lowing  
equations which enforce   cont inui t ies  between  elements  and s a t i s f y   t h e  
boundary conditions at the  ends:  

I 
I 

I I  I I  
I I  I I  

I + I  I I 
I 1 1 - 1  x3 -x7 

I + I  5 I -x3 I 
I '4 1 '8 I I 

I I I 'ti "G I 
I I I I .3' I-x; 

I I I I I I,; 

I 
I 
I 
1 
1 
I 
I 
I 
I 
I 

-< I 
2 2 

I I I I x;: I x$ x$ 

I I I 1 I x 3  I I I I I I x 4 1  " + I  x8 

I I I I I + l  I 

L I 1 1 1  I I ' b l  

R1(2) 

* =  0 

(5.63) 

where t h e  numbers in   paren thes is  are t he  numbering of  elements t o  which 
the  appropriate   quant i t ies   belong.  me square matrix in Eq. (5.63) is  
the  buckling  determinant,  of order  56x56. A common f a c t o r   o f   s i n a  and 
cosa ( a  = mmx/a) should  be  taken  out from the rows of   the  determinant .  

A second  example  considered is tha t   o f  a ha t -sec t ion   s t i f fened   p la te  
shown i n  Fig. 5.4 where t h e   s t i f f e n e r  dimensions and the i r  spacing is 
repe t i t i ve .  The s t i f f e n e d   p l a t e  i s  ideal ized i n  Fig. 5.4 in to   l ine   e lements  



v i t h   t h e  element numbers shown i n   pa ren thes i s .  The ipter-element  continuity 
and equilibrium  equations,   together  with  end  equations  for  the  end  elements 
(1) and (291,  can  be w r i t t e n   i n  a manner i d e n t i c a l   t o  EQ. (5.63). Because 
of r e p e t i t i v e   n a t u r e   o f   t h e   s t i f f e n e r s ,  these equations  can  be  considered 
t o   c o n s i s t  of three bas i c  parts; namely: 

( i )  a set  of equations,  say designated as [Tal  {Ra), r epresent ing   the  
lef t  end side of t h e  s t i f f e n e d   p l a t e ,  

(ii) a second set  of  equations,  [‘I),] {Rb} rep resen t ing   t he   r epe t i t i ve  
un i t .  The number o f   r e p e t i t i o n s   o f  t h i s  set of  equations is t h e  same as 
the number o f   t h e   r e p e t i t i v e   u n i t s   i n  the s t r u c t u r e ,  

( i i i )  a t h i r d  set  of  equations,  [Tc 1 {R,}, r epresent ing   the  right end 
side of t h e  s t i f fened p la t e .  

In  Fig. 5.4, the two ends  and the  inter-element   joints  are marked with 
a dot. The l e f t  side b lock   cons i s t s   o f   s ix   do t s  and  involves  elements from 
( 1 )   t o  (7) .  The first r e p e t i t i v e   u n i t ,  as well  as a l l  t h e   o t h e r   r e p e t i t i v e  
un i t s ,   con ta ins   s ix   do t s  and the  continuity  equation6  involve  elements from 
(7)  t o  (14 ) .  Assuming tha t   t he re   a r e   t h ree   such   r epe t i t i ve   un i t s   i n   t he  
plate, t h e  right side block  contains two dots and involves  elements (28) 
and (29). 

These three  matr ices  can be wr i t ten  as i n  t h e  following: 

“4 
x+ ’ -x- - 

3 1  j 

x- I -x; 
’ I  

51 
I 

x; I 
I 
I 
I 

I -x; 

31 



$ 1  
I 

x; I 
I 
I 
I 

The buckling  determinant  can  be  obtained  from  sub-matrices  [Tal, [ % I  and 
[T,], and the   e igenvectors   are  t he  column matrices  {Raj, {Rb) and {R, 1. 
As i n  Eq. (5.631, a common factor   in   each row f o r   s i n a   o r   c o s a  can be  taken 
out   in   the  determinantal   equat ion snd the   buckl ing   load  h d  the  corresponding 
eigenvectors are fhnct ions of t he  axia l  half-wave number m. The p lo t  of 
the  def lected  shape by means of  t h e  eigenvectors are useful   for   determining 
whether buckling  involves,  on a relative  magnitude, only local  elements 
(local i n s t a b i l i t y )  o r  all elements   (genera l   ins tab i l i ty ) .  Computer sub- 
rout ines   for   f inding  e igenvectors   are  conumnly ava i l ab le  and such  procedure 
w i l l  not, be (lcacr*lbed. here. 
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of how many elements go to   the   beginning   e igenvec tor  {Ra) and how  many go 
t o   t h e  tnding eigenvector {R,) itr a rb i t r a ry .  Houever, i n   t he   sub rou t ine  
(named BLKDET) used In the  program B U C M P  (Ref.  15c) , a working  space i s  
provided t o   f i r s t   s t o r e  [Tal and decompose it and then  repeatedly  br ing 
i n  [Tb] fo r   ope ra t ion  and f i n a l l y  [T,]. Consequently,  core  Storage can 
be  saved  by making [Tc] as small as possible.  That is the   reason why 
[T,] is  smaller than  [Tal i n   t h e  second  example. Some techniques   in  
handl ing  large  matr ices  and t h e  convention  for  angles  relating  the  orients- 
t i o n  of one p la te   e lement   to   another  are descr ibed   in  program  documents, 
Ref. 15a, b, c , which w i l l  be d i s t r ibu ted  by NASA. 

The present  method has been  used t o   c o r r e l a t e  with  other  existing  analyses 
and tests f o r  composite p l a t e s ,   s t ruc tu ra l   s ec t ions  and s t i f f ened   p l a t e s  
i n   t he   nex t   s ec t ions .  As has  been  mentioned  before,  the  usual  practice of 
e s t i m a t i n g   t h e   e l a s t i c   i n s t a b i l i t y  of  thin-walled  structures i s  t o  guess 
poss ib le  modes based on which s lmpl i f ied   ana lys i s  can  be made. Junctions 
of i n t e r n a l  members are   usual ly   taken as nodal  lines  about which force 
end moment e q u i l i b r i u m   a r e   s a t i s f i e d   t o  so= ex ten t   bu t   t he i r   t r ans l a t ions  
are ignored. The assumption  regarding  possible modes requi res   exper t i se  
i n  t he   ana lys i s  and may miss a lower-load mode and t h e  immovable nodal 
l i n e  essumption  requires  non-existing  external  forces  to  hold  the  joints 
which w i l l  make t h e   s t r u c t u r e   s t i f f e r   t h a n  it i s .  However, when the  mode 
i s  Correctly assumed, the   usua l  method may y i e l d  good agreement with mre 
exact  analysis  such as the  present   one,  as can  be  seen from the   next   sec t ions ,  

6 .  CORRELATIONS WITH WR ANALYTICAL RESULTS 

In correlat ion  s tudies   with  other   analyt ical   resul ts ,   the   mathematical  
models used in   o the r s '   ana lyses  w i l l  be  fol-lowed, i.e.,   whether a s t i f f e n e r  
is t r e a t e d  as a beam o r  a p la te   in   the   p resent   ana lys i s  w i l l  be   cons is ten t  
wi th   those   in  the  references.  

A. Bucklinn  of  simply  supported web wi th   i so t ropic   o r   o r tho t ropic   f lange  
( R e f .  18) 

cross  section  simply  supported and the   o the r  parallel s ide   f r ee ,   w i th  
and  without  unidirectional  composite  reinforcement on i ts  f lange,  i s  
studied. Two types of f a i l u r e  modes were  examined i n  R e f .  18, one is  
a l o c a l  mode and t h e   o t h e r  is  a long-wave mode. 

In  R e f .  18, the  buckling of  a supported web sec t ion ,  one s ide   o f  i t s  

The orthotropic   constants  used" are 

Ex = E i n   t he   d i r ec t ion   o f   f i l amen t  = 30.25 x lo6 p s i  

E = 2.03 x 10 psi 6 
Y 

v = 0.346 
Xy 

G = 0.5249 x 10 p s i  6 
XY 

(6.1) 

unless   otherwise  specif ied,   these  constants  w i l l  b e   u s e d   i n   t h e  rest of 
cor re la t ions  where or thot ropic   mater ia l s  are used. 

33 



Locd mode 
When t h e  dimension of the   s ec t ion  is such t h a t   t h e   a x i a l  wave length  

ie of the   o rder   o f  magnitude of the width  of   the web, one observes   the 
so-cal led  local  mode and t h e   r e s u l t s  are given in Fig. 6.1 where the  
f lange i s  t r e a t e d  as a p la t e .  It can  be  seen  from the   cu rves   t ha t  when 
the   sec t ion  i s  reinforced on the  outs tanding  f lange by composites,  the 
flange seems stiff enough t o   f o r c e  a node-line at the junct ion  of  the 
two  legs. A s  a consequence, the approximate  analysis  in Ref, 18 which 
implies  such  an  assumption  agrees  very w e l l  w i t h  the present  method. 
On the   o the r  hand, when the flange i s  not   re inforced,   the   junct ion seems 
flexible and may be Cisplaced and t h e  approximate  analysis yields higher  
values  than the  present method. 

Long-wave mde 

web is s tudied  where, i n  R e f .  18 as well as i n  t h e  present  method, t h e  
flange i s  t r e a t e d  as a beam. The geometry of t he  15-inch  long  colunn 
is given  in   the  fol lowing,  

For t h e  long-wave mode, t h e  same type  of  composite  reinforced flange- 

bw = 1.5 in .  bf = 0.6 i n .  tw = .O5 in .  tf = 3 tw 

For the  given  dimensions , one  half-wave yields   the  lowest   buckl ing 
load. The present method gives a buckl ing  parmeter18 k, = 1.58 while 
t h e  va lue   in  R e f .  18 i s  1.56. The d i f fe rence  i s  1%. 

B, Buckling  of   discretely  s t i f fened  isotropic  plate with a s ingle   o r tho t ro-  
p i c   s t i f f e n e r  ( R e f .  18) 
Shal low  or thotropic   eccentr ic   s t i f fener  

Figure 6.2 shows t h e  cross sec t ion  of  a d i sc re t e ly   s t i f f ened   p l a t e  
wi th   an   o r thot ropic   eccent r ic   s t i f fener .  The s t i f f e n e r  i s  so shallow 
t h a t   i n  R e f .  18 it i s  treated as a beam wi th  Gyz = 0. The boundary 
conditions along the  unloaced  s ides  of  t h e   p l a t e   a r e  w = M22 = N12 = 
N22 = 0. In  Ref. 18, displacements at the Junction  between the st iff-  
ener  and  the two pa r t s   o f   t he   p l a t e  were  matched f o r  out-of-plane 
displacement only.  The resu l t s   in   F ig .  6.2 showed exce l len t  agreement 
i n   s p i t e  of t he   d i f f e rence   i n   t he   r i go r  of t he  two analytical  approaches. 

Deep or thot ropic   eccent r ic  st iffener 
When t h e   s t i f f e n e r  is deep, it i s  taken as an   or thot ropic   p la te  i n  

Ref, 18 where forces  , moments and ro t a t ions  are matched a t  t h e  commor: 
boundary o f   t h e  three plate  elements whose la teral  displacements at 
that   jo int   are   i@ored.   In   Fig.  6 . 3  , two points  , marked as 1 and 2,  
are obtained  by  the  present  method while   the  sol id   curve i s  from the 
reference.  The resul ts   agree  very well. 
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C. Bucklinn  of plates wi th  mul t ip l e   i so t rop ic   s t i f f ene r s  and  sandwich 
panels (Refs. 19, 20, 21. 22) 

Figure 6.4 shows seven  types of mu l t ip ly   s t i f f ened   p l a t e s  and  sandwich 
panels t h a t  arb used t o  cor re la te   wi th   the   p resent  method. The results 
of cor re la t ions  are  given  in  Table 6.1 and br ie f   descr ip t ions  are given 
below  according t o  its o rde r   i n   t he   t ab l e .  The exactness of the   ana lys i s  
in   these   re fe rences   var ied ,   bu t ,   in   genera l ,   the   t rans la t ions   in   the  
j o i n t s  are neglected  while moment equilibriums are being  maintained. 

Panel 1 i s  an i n t e g r a l l y   s t i f f e n e d   p l e t e .  When the   l eng th   o f   t he  
p l a t e  i s  so propor t ioned   to  i t s  w i d t h   t h a t   t h e   c r i t i c a l  mode has   several  
axial waves and  the  buckling  load is  not   a f fec ted   by   the  number of stiff- 
eners  which,  for  the  present  geometry,  is  about   four   o r   f ive   s t i f feners .  
Such a mode i s  c a l l e d   l o c a l  mode i n  the refereneel9 and t h e   s t i f f e n e r s  
axe t r e a t e d  as d i s c r e t e   p l a t e s .  The result shown i n   t h e   t a b l e  i s  based 
on an i n f i n i t e l y  wide p l a t e   i n   t h e   r e f e r e n c e  and f o r  a s ix - s t i f f ene r  
p l a t e   i n   t h e   p r e s e n t  method. When the   pane l  is  long,  such as a 25-inch 
long ,   s ix-s t i f fener   p la te ,   the   p resent  method shows a s i n g l e  half-wave 
m d e  and the  buckl ing  load i s  22300 lbs .  where s t i f f e n e r s   a r e   t r e a t e d  
as d i sc re t e  beams. It differs by 5% wi th   t he   r e su l t  from Eq. ( A 3 1  
of  R e f .  20 which t r e a t s   t h e   s t i f f e n e r s  as beams wi th   t he i r   e l a s t i c   p rope r -  
t ies  smeared onto t h e  spacings. 

Penels 2 and 3 a r e  two p la tee  w i t h  Tee and L-sect ion  s t i f feners  
respect ively.  They a r e  from the  same reference as Panel 1 ( R e f .  19) 
and  used the same method. Tee end L sec t ions  are t r e a t e d  as d i sc re t e  
plate   e lements   joined  togehter   with  t ranslat ions  ignored.   In  t h e  reference,  
the   pane l  i s  taken as i n f i n i t e l y  wide while   the  value  given  in   the  present  
method is  f o r  a s ix - s t i f f ene r   p l a t e .  

Panel 4 is an isotropic   t russ-core sandwich  panel. I n  R e f .  21, such 
a panel i s  t r e a t e d  by  assuming  various  buckling modes and  matching moment 
equ i l ib r ium  in   j o in t s  whose t ranslat ions  are   ignored.  The lowest  load 
obtained by d i f f e r e n t  modes i s  taken as the  buckling  load.  This  approach, 
when cor rec t ly   appl ied ,   y ie lds   very  good agreement  with  the  present more 
exact method as can  be  seen i n  Table 6 .1  where two cases   are   s tudied.  
The only   d i f fe rence   in   the  two cases i s  the   th ickness   o f   the  w a l l  of 
the  core  (see  Fig.  6 .4) .  Case A i s  f o r  a core wi th  equal  thickness of 
core web and the face shee t ,  known as a sandwich where c o r e   r e s t r a i w  
face  because w i t h  t h a t  thickness  proportion, t h e  face   shee t   re l ies  on 
core webs f o r   i n s t a b i l i t y   s u p p o r t .  On the  other  hand,  case B ,  where 
the core web is  only  one-half as th i ck  as the  face  sheet ,   the   opposi te  
Is true. Figure 6.5 shows t h e  mode shapes  of   the two cases by ca lcu la t ing  
the  eigenvectors  of  the  buckling  analysis.  It c l e a r l y  shows t h a t ,   i n  
case A ,  where core-restrains-face,   the   face  sheets   near   the two f r e e  
edges  of the   pane l   buckled   whi le   in   case  B ,  the   face   shee ts  are t h i c k  
enough t o   s u s t a i n   t h e   l o a d  at t h e  free edges  of the  panel  and it i s  
the  core  web near  the  center  of  the  panel  that   buckled first. 
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Panels 5 ,  6 and 1 are a corrugated  sandwich  panel, Zee and hat- 
s ec t ion   s t i f f ened   p l a t e s   r e spec t ive ly ,   t aken  from Ref .  22. The  method 
used i s  t h e  same as i n  Ref. 19 where t h e   s t i f f e n e r s   a n d   t h e  web o f  the 
corrugation are treated as d i sc re t e   p l a t e s   j o ined   t oge the r  and displace- 
ment of the. j o i n t  is neglected. The values  given i n  the   re fe rence  are 
f o r   i n f i n i t e l y  wide  panels  while  thoae  of  the  present method are fen 
f i n i t e   p a n e l s .  The higher  buckling  loads  predicted by the   p resent  
method are due t o   t h e   f a c t   t h a t  the flanges of   t he  Zee and  hat-section 
s t i f f e n e r s  are considered as a p a r t   o f   t h e   p l a t e   i n  t he  present  method 
while i n  t h e  references  the  bending  s t i f fness   of  the p l a t e  and the  
flange are ca lcu la ted   separa te ly  and then added together .  The idea l iza-  
t i o n   f o r   t h e   s t i f f e n e r s  at the   j o in t s  as t r e a t e d   i n  Ref. 22 is  c lose r  
t o  a r iveted  a t tachment   while   that   of  the  present  method i s  similar t o  
a bonded connection. It i s  i n t e r e s t i n g   t o   n o t e  tha t  tests conducted 
i n  Ref.. 23 showed t h a t   t h e   b u c k l i n g  stress of  a bonded  Zee-section 
s t i f f e n e d   p l a t e  is 19% higher   than a corresponding  riveted  Z-stiffener 
p la te .   Inc ident ly ,   th i s   va lue  i s  q u i t e   c l o s e   t o  the 18% as ind ica ted  
by Panel 6 of  Table 6.1. 

Table 6.1 Correlat ions of Analyt ical  Results i n  Literature and t h e  
Present  Method f o r  t h e  Seven Panels Shown i n  Fig. 6.4 

Panel  - 
1 

2 

3 

4 

5 
6 
7 

Remark 

." 
Ref. 19, s t i f f e n e r  as 
d i s c r e t e   p l a t e  

R e f .  20, s t i f f e n e r  as 
smeared beam 

Ref. 19,  l o c a l  mde, 
s t i f f e n e r  as p l a t e  

Ref. 19,  Case A ,  

Case B, 

Case C ,  

R e f .  21, Case A, core- 
restrains-face  type 

Ref. 21, Case B, face-  
res t ra ins-core  type 

Ref. 22 

R e f .  22 

Ref. 22 

Comparison of  Buckling Load 

Exis t ing  * Pr e s ent 
Reference Method Rat io  

ks = 1.87 1.86( -6) 1.01 

'cr = 23,450(1) 22,432(1)  1.04 

ks = 4.30 4.25(5) 1.01 

acr = 21,400 21,300(9) 1.01 

ocr = 42,000  41,600(6) 1.01 

'cr = 41,100 41,900(7) 1.00 

acr = 16,920 16,954(7) 1.00 

acr = 6,070 6,019(9) 1.01 

a c r  - - 20,400(5) 19,550(5) 1.03 

a c r  = 40,900(7)  49,800(12)  0.82 

'cr = 47,700(10)  52,500(17) 0.91 

".- 

* K is a buckling l o a  parameter which ie proport ional  to the buckling 
l .8~11, PC, ln tahe total. load, Ibm., end acr i s  t h e  Rtreee, w3i. 
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From the  previous  comparisons  with  existing  analytical   solutions 
fo r   i so t rop ic   o r   o r tho t rop ica l ly   r e in fo rced   s t ruc tu ra l   s ec t ions  and 
s t i f f e n e d   p l a t e s ,  one  can see t h a t   t h e   c o r r e l a t i o n s  are usua l ly   wi th in  
a f e w  percent.  In a few cases where discrepancies are not   negl igible ,  
possible   causes  for such deviations are explained. It seems that the 
existing  approximate methods are qui te   accura te  and i n  most cases should 
requi re  less computation time in  execut ion  than  the  present  method. 
However, some degrees of uncertainty are always  present i n  such  approxi- 
mate methods  which  might be due t o  mode-guessing, less exac tness   in  
matching  elenents,  omission of coupling  between  in-plane  displacements 
and bending  loads,   etc.   In  such  instances,  a more rigorous  theory 
l i k e   t h e   p r e s e n t  method should  be employed. 

7. TEST CORRELATIONS W I T H  BORON REXNFORCED PLATES, 
SECTIONS AND STIFFENED PLATES 

Correlat ions  with tes t  da t a  from l i terature  

A. Buckling  of axially loaded  all-composite  laminated f la t  plates 
(Refs. 24 and 25) 

Four  specimens  which  have  simply  supported  loaded  edges are   taken 
from R e f .  24 t o   c o r r e l a t e  w i t h  the  present  theory.  The physical  proper- 
t ies of  boron  tape are given i n  Ref.  24. The t e s t  specimens are 20-ply 
p l a t e s  and t h e  nominal  thickness  of  boron  tape i s  0.0053 inch. 

Table 7 .1 shows tes t .   cor re la t ions   wi th   the   p resent   ana lys i s   for   four  
p l a t e s  of s i z e  11 x 9.95 in .  w i t h  t h e  lengtn 11 in ,   a long   the   loading  
direct ion.   Correlat ions are reasonably good. 

Table 7.1 Test Correlat ions  for  All-Boron  Composite Plates  (Ref. 24) 

Plate 
Bo. i n  
Ref. 26 

404 

405 

404 

r Condition 
If 1Jnloaded 

Sides 

f r e e  

free 

simple 
support 

simple 
support 

r 
- - 

- 
r o p i c   t h e o r y  

7- 
Flbe r 

Direction 

Buckling Load, N,, l b / in .  

load  (0") 

perpendicular 

l oad  (Oo) 
271 p a r a l l e l   t o  

t o   l o a d  (90") 
23.3 

perpendicular 251 
t o  load (go") 

I 

Other 
Theories 

215* 
216** 

23.6** 
23.7" 

292" 
299** 
285 *** 
223 * 
226** 
210*** 

T 
Analysis 
P1 

Value 

206.5 

22.6 

286.5 

217.0 

sent  Analysis 
Rat io( tes t /ana lys i s !  

0.97 

1.01 

0.95 

1.16 

1 
i 

+* method 
***Galerkin method 
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Good corre la t ion  has also been obtained from Aehton and Love's test 
(Ref. 25).  The boron fiber o r i en ta t ion  (0' and combinations of 0' and 
goo) of the  specimens and the   buckl ing   load  are shpwn i n  Table 7.2. 
The e l a s t i c   cons t an t s  of bomn and t h e  measured thicknesses   of   plates  
t h a t  were used i n   c a l c u l a t i o n s  are given i n  Rkf.  25. The .results showed 
t h a t   t h e  maximum error is less than 3% f o r  the five cases where load  
is applied at Oo wi th   r e spec t   t o   f i be r   o r i en ta t ion  and much l a r g e r  
d i screpancies   for   the   o ther   f ive   cases  where load  is appl ied at 90' 
t o   t h e  f iber.  T e s t  r e s u l t s  were obtained by the Southwell  plot. The 
goo tests used the same p l a t e  after t h e  Oo test w a s  f in i shed  by tu rn ing  
the same plate  around goo. The i n f e r i o r   c o r r e l a t i o n s   i n  t h e  cases   of  
90° specimens may have been  caused, as was sugges ted   in  Ref. 25, by 
e f f e c t s  due t o  boundary cons t ra in ts .  The tes t  specimens are 20-ply 
square  plate  measured  10-inches  across  between  edge  supports. The 
loaded  edges  are clemped and  unloaded  edges are simply  supported. 

Tab le  7.2 Test Corre la t ions   for  All-Boron  Composite Plates  (Ref.  25 1 
c 

I 

c 

Pla t e  Fiber 
No. Direct   ion 

1 00 - goo 

3 S a m e  

4 
all 00 5 

Same 

a l t e r n a t e  

20 all oo 

Load Applied 
P a r a l l e l   t o  Oo* i- 

Analys i s  

Load Applied 
Pe rpend icu la r   t o  Oo 

f I 

L I Rat i o  - 
0.97 

1.17 

1.16 
1.43 
1.25 

*Oo r e f e r s   t o   t h e   d i r e c t i o n  of f i b e r s .  

Correlations  with  Boeing's  tests  of  buckling of axial ly  compressed  composite 
re inforced plates, s t ruc tu ra l   s ec t ions  a d  s t i f f e n e d   p l a t e s  

The phys ica l   p roper t ies   used   in  the ana lys i s  are: 

Boron-epoxy BF 907 Titanium 6AL-4V 
= 29.117 x 10 p s i  

= 2.341 x 10  p s i  

6 E = 16.4 x 10 psi  6 

6 G = 6.2 x 10 6 p s i  
E22 (7.1) 
G = 0.75 x 10 p s i  

v = 0.2467 

Density = .072 l b / i n .  

6 V = 0.3 

Density = 0.158 lb / in .  3 
12 

3 
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For  boron  composite, E11 and E22  +re calculated,  from a program based 
on R e f .  26. The G value from the program seemed too  high and the present 
value  of 0.75 x lo6 i s  t h e  same as that i n  Ref .  25. Both E22 and G 
used here are higher  than that i n  Eq. (6.1) which are from Ref,. 18. 

For aluminum a l loy  (7075-T6), E = 10.5 x 10 6 ps i  i s  used. E l a s t i c i t y  
properties  of  adhesive material which  bond  composite  laminates t o   t h e  
m e t a l  base are ignored  but i ts thickness is r e t a i n e d   i n  the analysis.  

B. Test correlat ions  of  composite reinforced f l a t  plates (BoeinR) 
Test correlat ions have  been made with  recent Boeing tests on composite 

p la tes .  A t o t a l   o f  48 specimens were tes ted  in   which-half  is  symmetri- 
cally  laminated and the  other   half  i s  unsymmetrically  laminated. The 
loaded  edges are clamped, the unloaded  edges are free o r  simply  supported. 
Measured between  clamps  and knife-edges,   the  plate i s  9.0 x 2.98 inches. 
Thickness  of t h e  specimen i s  from 0.097 t o  0.127  inches. Details of 
the geometry are given i n  the Appendix. 

Test r e su l t s  and correlat ions w i t h  analysis are given i n  Table 7.3. 
For  specimens  with  unloaded  sides  free, the calculated  buckling  load 
which is f o r  models w i t h  simply  supported  loaded edges i s  multiplied 
by a factor  of  four  to  get   the  corresponding  value for t he  clamped-Free 
case. That a fac tor   o f  four is theo re t i ca l ly   co r rec t   t o  be used i n  
the present  case i s  v e r i f i e d   n m r i c a l l y  by making an .analysis  of a 
plate wi,th loaded  edges clamped and unloaded sides simply  supported 
and then  increaae i t s  width  to  extremity  (numerically,  from t h e  original 
2.98 i n .   t o  500,Q in. ). The buckling  load of such a wide plate   should 
be almost t he  same aa a clamped-free p la te .  The result ve r i f i ed   t ha t  a 
factor   of   four   to   convert  the  simple-free  plate t o  a corresponding clamped- 
free p l a t e  is numerically  correct. 

In  Table 7.3, erxors based on two  Irethods of  evaluation  are  given. 
Method 1 is based on using  the measured length between the clamped 
edges which i s  9.0 inches as the   t heo re t i ca l   l eng th  of the p l a t e   i n   t h e  
analysis.  This implies t h a t  t h e  test r i g  is theore t ica l ly   per fec t  i n  
making t h e  ends clamped. The average  errore  for  the clamped-simple 
apecimene are  12.'(% and 13.6%. and f o r  clamped-free  specimens a re  
19.7% esld 38%. Since i n  the test  set-up,  the  ends o f  t he  specimen are 
clamped  between two thick  blocks which are  then clamped t o  the  t e s t i n g  
head, it i s  possible that per fec t  clamped conditions might not have 
been  achieved i n   t h e  tests. If t h i s  assumption i s  t r u e ,  one may postu- 
late t h a t  an end-fixation  factor  of  four used f o r  the  clamped-free 
specimens  should be revised. Based on the 24 tes t  r e su l t s   o f   t he  
clmped-free  specimens, an average  end-fixation  factor i s  found t o  be 
3.14. Aseumjng t h a t  t h e  buckling load i s  propor t iona l   to   the  end- 
f ixa t ion   fac tor  and inversely  proport ional   to   the  square  of  the length 
o f   t h e   p l a t e   ( t r u e   f o r   t h e   c l a s s i c a l   i s o t r o p i c   p l a t e   t h e o r y ) ,  a modified 
length  of 10.15 inches is  found  (10.15 = 9 x (4/3.14)lI2). Based on 
t h i s  modified length,  the e r rors   o f   cor re la t ions  are given i n  Method 2 
of Table 7.3. The average  errors   for  the clamped-simple specimens are 
reduced t o  9% and 5.5%; and f o r  t h e  clamped-free  specimens,  they become 
5.9% and 13.5%. 
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Table 7.3 Test Correlations of Symmetrically  and 
Unsymmetrically  Laminated Composite P la tes  (Boeing) 

T e n t ,  N, 
(lba/in.) 

3,290 
2,750 

4,100 
4,100 

Boundary Conditions: 
Test Loaded Edges Clamped, 

Specimen Others Simply  Supported 

.3 

Average e r r o r  

8E-1 
-2 
-3 

8F-1 
-2 
-3 

8G1 

3,830 

3,560 
4,025 

5,280 
3,840 
4,070 
5,175 
4,740 
4,470 

4,260 
4,025 

3,960 

Ana 
Method 1+ 

Error  
( $ )  

P 

- 0.07 - 1.7 
-11.7 
-14.6 
-13 5 
-22.5 
- 4.8 
-14 3 
-36.6 
- 5.6 
-13.4 
-13.4 

-12 7% 

r s i s  

Method 2*0 
Error 

($1 

4.0 
4.6 

21.6 
3.2 
0.6 
5.5 
7.0 
7.7 
5.0 
5.5 
4.1 
2.4 - 

-10.5 
-12.6 
-27.4 
- 4 . 1  
-32.8 
-22.9 
- 7.7 
-13.6 - 6.3 
- 9.2 
- 7.6 - 9.0 

- 0.1 - 2.1 
-15.5 

7 .1  
-18.3 
- 9.3 

3.4 - 2.1 
4.2 

- 2.1 - 0.2 
- 1.8 

1 Average e r r o r  -13.6% (5.52% I 

Boundary Conditions: 
Loaded Edges Clamped, 

Others  Free 

Ana: 

Method 1* 
Error  

( % I  
Y "  

-22.1 
-21.4 
+ 0.1 

-23.0 
-26.2 

-18.1 
-17.6 
-21.0 

-20.2 
-21.8 
-24 -0 

-20.4 

sis 
Method 2*a 

Error 
(PI 
4.0 
4.6 
21.6 

3.2 
0.6 
5.5 
7.0 
7.7 
5.0 
5.5 
4.1 
2.4 

Average e r r o r  119.7% I *** +5.93% - 

1,340 
1,140 
1,010 

1,230 
1,310 
1 ,410  

1,110 
1,110 
1,140 

940 
9 70 

1,095 

- .  - 
-13.4 u . 7  
-43.2 -12.6 
-61.6 -27.0 
-53.5 -20.7 
-32.8 - 4 .3  
-20.9 5.0 
-66.1 -31.0 
-60.0 -25 7 

-26.8 - 0.3 

-10.7 12.7 

-36 1 - 6.9 

-32.4 - 4.2 

Average e r r o r  -38.196 113.5% I 
. . ~ _ _  

*Method 1 used t he  measured length between the clamped edges  which i s  9.0 inches 
as the   l ength  of  t he   p l a t e   i n   t he   ans lys i s .   E r ro r  = 1 - (Analytic result/Test). 

analysis.   Error = 1 - (Analytic result/Test ) . *%thod 2 used t h e  modified  length which is calculated as 10.15 inches   i n   t he  

***Average of  the  absolute  values of  t h e   e r r o r s .  
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C .  

The considerable  discrepancy between t e a t  and analysis shown i n  
Table 7.3 m y  be caused by (1) the  constraints  provided  by t h e  test, 
setup, (2) t he  non-uniformity  of  specimens,  and ( 3 )  uncer ta in t ies   in  
determining  the  buckling  load from the  load-deflection  curves. For 
item (l), t h e  use of effect ive  length as suggested i n  Method 2 of 
Table 7.3 seemed t o  have  improved the  correlat ions . However , it i s  
not a s e t i o f ~ c t o r y  answer. The non-uniformity i n  specinaens with respect 
tb   the   th ickness   d i s t r ibu t ion ,  as indicated  in   i tem (2), may cause a 
symmetric  specimen t o  become unsymmetric. The ef fec t   o f   eccent r ic i ty  
on the  buckling  load w i l l  be  less  severe  lor  plates  with  sides  simply 
supported  than  those with sides  free  because the latter has no support 
*om t he   f r ee  sides to  resist   in-plane  bending moments produced  by 
the   eccent r ic i ty .  In item (31, which  appeared i n  some test results, 
it is d i f f i c u l t   t o  determine the buckling  load fmmthe longitudinal 
load-deflection  curve. Two examples  which showed such  undeterminable 
curves  are  given i n  the Appendix together with the Southwell  plot which 
used the lateral   load-deflection  curve  to  determine the buckling  load. 

Test correlat ions of BoeinR specimens of composite reinforced  struc- 
tural.  sections (Fig. 7.1) 

angles , Zee's,  hat-sections  and  Tee-sections , reinforced  with  mi-direc- 
tioneS.  boron s t r i p s  and rods. These section  specimens,  as w e l l  as the 
specimens  of s t i f fened  panels t o  be  described i n  (7, D. ) are  machined 
flat at the  loaded  edgea,  and  placed i n   t h e   t e s t i n g  machine  without eny' 
mechanical  fastening between t h e  specimen  and t h e   t e s t i n g  machine. The 
unloaded  edges  of the  sect ion  are   f ree .   In   the  analysis ,  the l i p s   o f  
Zee-sections  and the  t ips  of  Tee-sections  are  idealized as beams vhile 
dl the other  reinforced p d s  are treated  plate  elements.  The 
junction of the  machined Tee-section  of  configurations 91-1 and 95-1 
has  been t r ea t ed  as the  nodal  l ine  of  three  plate  elements  without the 
f i l l e t  and a l so   t rea ted  85 a beam element wi th  the f i l l e t  considered 
and joir?ed  by  three  plate  elements. Tne d i f fe rence   in  the results 
obtained by the two d i f fe ren t   idea l iza t ions  was found t o  be s m a l l .  

Figure 7.1 shows the  geometries of  some s t ruc turs l   sec t ions ,   inc luding  

"he tes t  results and correlat ions with analysis are given i n  Table 7.4. 
It c8n be  seen that all correlat ions are reasonably good except 9A-l and 
gJ-1. For  specimens of 9A-1, the  low prediction might be t h e   r e s u l t  of 
ideal izat ion which had neglected the corner  curvature  of the angle-section. 
If a curved p l a t e  element i s  added to   the   p resent .   ana lys i s ,   the   qua l i ty  
of the  analysis  could  be improved.  For  specimens of 9J-1, t he   e r ro r s  
might be  caused  by diff icul t ies   in   determining  the.   buckl ing  load from 
load-deflection  curves  of test. It seems that fo r  composite  reinforced 
p la tes ,   there  i s  an i n i t i a l   p e r i o d  of adjustment  of  a  macroscopic  nature 
in   t he   i n i t i a l   l oad ing   s t age ,  As a  consequence, i n  some specimns at 
l e a s t , t h e   i n t i a l   p a r t  of the  load-deflection  curve  behaves  abnormally 
and i s  not  dependable. If a specimen i s  such that i t s  buckling  load is 
much smaller than the  ult imate  load,  as so happened in   the   case  of 93-1, 
one has difficulty  in  reading  accurately  the  buckling  load from t h e  
test curves. 
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Table 7.4 Test Corre la t ions  of Being Specimens 01 
Boron-Reinforced St ruc tura l   Sec t ion6  (Ng. 7.1) 

I" - r"" 

-5 a 
-7 

-2 
-1 

-3  

.- 

-1 

-3 
-2 

-1 
-2 
-3 
-4 

a -5 

-7 

-1 

-3 
-2 

-2 
-1 

-3 

I 

- 

- 

. "_ . 

. "  
-1 
-2 
-> 
." _. 

-1 
-2 
-3 

. " 
-1 
-2 
-3 
-4 

-1 
-2 
-3 

"_ 

- 

. . . -. . . . . . 

? Ax& half-ware ntnbmr 

U n i t  strain, io./in. 

** Tha o r y r u l  tmst plot OZ lod-vs.-daflaatlon iw not available for rwheck for t h m  thram spmclwans a f  
9S-1. The value for sp.0iP.n -2 18 not cowlstant wlth tha other two apealmmns and 18 not includmd 
ln thm arrt.ga. 

D. Tests of Boeing  specimens of composite  reinforced  st iffened plates 
]FIR. 7.2) 

Figure 7.2 shows the  geometries of  th ree   types  of  s t i f f e n e d   p l a t e s ,  
including  composite  reinforced  hat and angle-sect ion  s t i f fened  glatee 
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and i s o t r o p i c  honeycomb sandwich p ls tee   re inforced   in te rna l ly  with boron 
composite e t r i p e .  The epecimene are mschined flat at the  ends  and  placed 
i n   t h e  t e a  t i n g  mechine without any fastenings.  The unloaded Bides of 
the   pane l   and   s t i f feners  are free. For long   p la tes ,  the skin is ins t ru-  
mented for   e l+st ic   buckl ing and the   sk in   buckl ing   load  is  taken   for  
co r re l a t ion  w i t h  .analysis .   For   short   p la tes ,   only  ul t imate  loads were 
recorded and no ana ly t ic   cor re la t ion  w i l l  be given,   In   the  analysis ,  
the  deep  boron  re inforcement   of   the   s t i f feners   in   plates  -A, -B, 4 ,  
-€I, -I and -J i s  t r e a t e d  as beams connected t o  t h e  two sides of angles 
as plate   e lements   while   in  -C, -D, -E and -F, t h e  boron s t r i p s   t o g e t h e r  
with the immediate skins  are t r e a t e d  as plate  elements. 

From Table 7.5, it can be seen that ali t he   p red ic t ed   e l a s t i c   buck l ing  
loads are lower than t h e  tes t  ultimate  loads,  except  specimens -E and -F, 
which are honeycomb sandwich p l a t e s  whose core was crushed  before  buckling 
occurs,  and  specimen -I where t h e  two numbers are  extremely  close. The 
polyid.de coat  seemed g rea t ly   s tnng thened  the buckl ing   s t rength   o f   the  
s k i n   i n  specimen -I. I n  general ,   the   correlat ions are sa t i s f ac to ry .  
The higher predic t ions  are due, at least i n   p a r t ,   t o   t h e  fact t h a t  the 
skin between s t i f f e n e r e  are supported laterally only  by  frictions  developed 
during  the test  whi le   in  t h e  theory simple support of the skin i s  assumed. 

Tablo 7.5 Test Correlations of Boeing Specimens of 
Boron-Rolnforced Stiffened Plate6 (Fig. 7.2) 

- 
PIpl 

~ 

m. 
-~ 

11-1 

n-a 

1 1 4  

1 1 4  

11-2 

1 1 4  

1 1 4  

11-8 

U-I  

1 1 4  

~ - 

RRIIIORCLD TITAMIUW 15.0 
HONEYCOIB SAHDIICU. 
SHORT PIATC 

I L 

P O  t 0 . W )  

155 (0.0052) 

252 tO.ooz8) 

0.85 

0.90 

0.75 

0.93 
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8. DISCUSSIONS 

6 0 ~  po in t s  of i n t e r e s t  that came up during  the  numerical   s tudy  of   the 
method will be  discussed  in   the  fol lowing.  

A. Effect of layer  arrangement  of  composite  reinforced plates 
A simple ca lcu la t ion  which shows the   e f f ec t   o f   l amina   conf igu ra t ion  

on re lat ive  s t rength  and  weight   of  a p l a t e  under axial compression is 
shown i n  Tab le  8.1. 

For the  four   boundary  condi t ion6  s tudied,   the   favorable   layer  
arrangemknt,  except  the free-free case,  i s  t o   p l a c e  composite  laminates 
between metal layers .  In  such   conf igu ra t ion ,   migh t   r a t io  is 73% 
whi le   s t r eng th   r a t io  i s  95% i n  comparison with the al l - t i tanium  plate .  
When t h e  composite i s  p l aced   ou t s ide ,   s t r eng th   r a t io  i s  dropped t o  
about 50%. A possible  explanation is t h a t  when t h e   a x i a l l y  compressed 
p l a t e  i s  buckled, i t s  outer   e lements   far ther  away from t h e  mid-plane 
are sub jec t ed   t o  more severe   ex tens iona l   and   twis t ing   s t ra ins   than  
the  elements which are c loser   to   the   mid-p lme and,  conoequently, 
adequate  face  layers  should  have  high G and E22 values as w e l l  as 
E11 value. For the   cen te r   l aye r ,   s ince  most of  i t s  deformation i s  
r e l a t ive ly   o f   t he  axial extensional   type,  i ts E11 may be more inf lu-  
e n t i a l   t o   a f f e c t   t h e   s t r e n g t h  of the  p l a t e   t han  i t s  E22 and G. This 
may also explain the  low s t r e n g t h   r a t i o   o f   p l a t e  No. 4 i n  Table 8.1, 
s ince   in   tha t   case   the   composi tes   in  one s i d e  of t h e  f ace   o f   t he   p l a t e  
s t i l l  subJec ted   t o   tw i s t ing  in buckling  deformation. 

Table 6.1  Uniaxial  Compressive  Buckling o f  Laminated P la t e s  
( a l l  Oo fiber) w i t h  Various  Thickness  Ratios 

Pla te  9" x 2.8" Relative Buckling Laad Ratio 
Weight 

c 
No. a Titmiurn 

I 
Compon t tc t  

C 

0.565 0.532 1.387 

"" 
0.1466 0.490 2.06 
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B. Effect of in-plane  constraints  along  the  unloaded  sides of a s t i f f e n e d  
plat  e 

The e f f e c t  of in-plane  displacements  along  the  unloaded  sides of a 
s t i f f ened   p l a t e  can be seen from a ca lcu la t ion  made f o r   t h e   s i n g l e  s t i f fener  
p l a t e   o f  Fig. 6 .2 .   In   the  re la ted  reference18,   the  in-plane  constraints  
at the  two s ides   a r e  It12 = Nz;! = 0 where N12 i s  the   shear   force .  If t h e  
aondit im 1512 = 0 is replaced by u = 0 which m c u u  the   displacement   in   the 
shear  PcJrce rl irection i s  prevented  instead of t h e   s h e a r   f o r c e   i t s e l f ,   t h e  
present   analysis  shows tha t   t he   buck l ing   l oad  w i l l  be  increased  considerably. 
Table  8.2  gives  the  values. 

Table  8.2  Effects  of  In-Plane  Constraints at the  
Unloaded Sides and Different  S t i f f ene r   Idea l i za t ion  

fo r   t he   S t i f f ened   P l a t e  of Fig. 6.2 

I 
B Vdue i n  
Fig. 6 . 2  

In-Plane Boundary 
Constraints 

N22 = N12 = 0 

NZ2 = N12 = 0 

N22 = u = 0 

NZ2 = II = 0 
. .. . 

- N12 = 0 - 

N22 - N12 = 0 

= u = 0 

N22 = u = 0 
"-. 

S t i f f e n e r  
Idea l i  z a t  ion - - 

as beam (Ref. 18) 

as besm \ 

as beam (Ref. 18) 

as beam \ 

Relative  Buckling 
Load - 

1.00 (N/N = 0.93)* 
eq  

1.00 

1.24 

1.54 
I 

1.00 (N/N = 2.86)* 
eq  

1.00 

1.23 

1.32 

*E A /EM = 1 .5 ,  see  Fig. 6.2 
9 8  

It can be seen tha t   for   the   p rescr ibed  geometry, buckl ing  s t rength is  
increased more than 20% by prevent ing   the   s ides  from moving i n   t h e   d i r e c t i o n  
of  the  load. For d i f f e ren t  geometry,  however, t h e   e f f e c t  may not be so 
noticeable.  

C. Difference due t o  idea l i za t ion  of st iffeners and flanues 
Zt i f feners  and flanges of H sec t ion   o r  t~ s t i f f e n e d   p l a t e  can be ideal ized 

i n t o   e i t h e r  beam elements o r  plate  elements  depending on t h e  geomeLry of 
t h e  member i t s e l f  and t h e  geometry of t h e   s t r u c t u r e .  However, d i f f e ren t  
waya of idea l iza t ion  m e y  produce qui te   subs tan t ia l   d i screpancies  i n  t h e  
analytical r e s u l t s .  Table 0.2 above shows t h e  d i f f e rence   i n  loads by 
treating t h e   s i n g l e   s t i f f e n e r  in Fig. 6.2 first IS a beam and  then 8s a 
plate. Two similar instances a re  shown in Table 8.3 taken from s t ruc tu res  
of  Figs .  6.1 and 6.4. 
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Table 8.3  Effect  of  Different Ways of 
Idea l i za t ion   o f   S t i f f ene r s  and FLanges 

Kxamplc Descript ions Uuckling Load S t i f f e n e r  o r  Flange 
Idea l iza t ion  - 

Web with or thot ropic  

described i n  See. (6 ,  A )  flange as beam (present   ana lys i s )  Long-wave mode 
kw = 1.56 flange as beam ( R e f .  18) 

5.90 flange as pla te   (present  and Fig. 6.1 
1.58 

ana lys i s )  

P la te   s t i f fened   by  s ix  
i so t rop ic   i n t eg ra l  

s t i f f e n e r s  as beams (Ref. 20) 

mode descr ibed   in  
s t i f f e n e r s .  Long-wave 

'c r = 23,450 l b s  

s t i f f e n e r s  as beams (present  22,347 
ana lys i s )  

Sect.  (6 ,  C )  and  Fig. 
arlalysi s ) 6.4, panel 1. 

s t i f f e n e r s  as p la tes   (present  ! 29,468 

Such large  discrepancy as shown i n   t h e   f i r s t  example of  Table 8.2 i n  
% r e a t i n g   t h e  flange BB beam and as plate   warrants  f u r t h e r  study of t h e  
matter. 

D. Buckling mode shape p l o t s  
In  Fig. 6.5, t h e  mode shapes  of a t russ   core  sandwich  panel  corresponding 

t o  two d i f fe ren t   core  web thicknesses  have  been shown. Such p l o t s   y i e l d  
va luab le   phys i ca l   i n s igh t   i n to   t he   i n s t ab i l i t y  mechanisms of   s t ruc tures .  
An addi t iona l  example is  given  here t o  demonstrate  the  usefulness clf such 
mde  shape   p lo t   in   ident i fy ing  weak  members i n  a s t r u c t u r e  from a buckling 
point  of view. Fig. 8.1.a shows the   buck l ing  mode shape for   pane l  1 i n  
Fig. 6.4, wi th   th ree   s t i f feners .  It i s  seen   tha t   the   s t i f fener  is  weaker 
than  the  skin from the  point  of view of  buckling.  In  the  succeeding  f igures 
of  Fig. 8.1, t he   s t i f f ene r   t h i ckness  i s  gradually  increased and the   sk in  
thickness  correspondingly  decreased so t ha t   t he   t o t a l   c ros s - sec t iona l   a r ea  
(and hencc Lha weight) is t h e  same i n  a l l  cases.  It i s  seen t h a t ,   f o r   t h e  
same weight,   the  panel of Fig. 8 . l . c   car r ies   the  meximum load,  a gain of 
54% over  the  panel of  Fig. 8.1.a. Similar  studies  can  be made  on  more 
complicated  cross-sections. The usefulness of t h e  mode shape p lo t  i n  
ass i s t ing   des ign  and in   s t ruc tura l   op t imiza t ion  i s  evident.  

9.  CONCLUSIONS 

The p resen t   ana lys i s   fo r   t he   i n s t ab i l i t y   o f   compos i t e   p l a t e s ,   s ec t ions  and 
stiffened  plates  with  composite  reinforcement,  is an  exact   theory  in   the  c lass i -  
cal   sense.  The connection between plate   e lements  and  between p l a t e  and beam 
elements ,   wi th   the  effect  of  o f f se t   i nc luded   i n   t he   ana lys i s ,  and t h e  con- 
s ide ra t ions   fo r   t he   cond i t ions  a t  all the  unloaded  edges'  of  the  structure are 
r igorous  and  consis tent   with  the  l inear   plate   theory and  elementary beam theory. 
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Reasonably good agreement with  exis t ing  analyt ical   and tes t  da t a  is  
obtained from t h e   r e s u l t s  o f  the   cor re la t ion   s tudy .  Some s c a t t e r i n g   i n  
test cor re la t ions   ind ica tes   the   degree   o f   uncer ta in t ies   in   dea l ing   wi th  
composite materials in   theory  as well as in   techniques of f ab r i ca t ion  of 
tht composi te   re inforced  s t i f fened  s t ructures .  If the  composites are so 
ideal such that no s h e a r   s t r a i n   e x i s t ?   i n   t h e   d i r e c t i o n   o f  t h e  thickness ,  
a l l  l aye r s   a r e  homogeneously o r tho t rop ic ,   t he  material s t r e s s - s t r a in  
fol lows  l inear  Hooke's law unt i l   buckl ing  occurs ,  no res idua l  stress, no 
s l i d i n g  between l aye r s  and  no separation  occurs between  laminates  and 
metal, then  the  mathematical model s t i pu la t ed  for laminated  composites 
i n   t h e   a n d y s i s  is e x a c t   i n   r e a l i t y ,  and reasonable   correlat ion between 
theory  and tests might be  expectea.  Further  complication arises from t h e  
uncer ta in   p roper t ies  of the   adhes ive   l ayer  which  bond t h e  composite  lamina 
t o   t h e  m e t a l .  When the   th ickness   o f   the   adhes ive   l ayer  is o f  compsrable 
order   o f  magnitude IPS the   th ickness  of t h e  composites, it could  be impor- 
t a n t   t o   i n c l u d e   t h e   e l a s t i c i t y   o f   t h e   a d h e s i v e   l a y e r  and t h e   e f f e c t  of t h e  
inter-lamina shear i n t o  the analysis .  

Since  the  present  method  combines local i n s t a b i l i t y ,  which involves  only 
some of  the  e lements ,  as wel l  as gene ra l   i n s t ab i l i t y ,  which  involves  the 
whole s t r u c t u r e ,  t he  solut ion  of  t h e  e igenvec tor   for   the   par t icu lar   e igen-  
value  (buckling  load) i s  useful .   This   e igenvector   capabi l i ty  has been 
included and it would be   u se fu l   i n  an optimizat ion  analysis  where the  
weak members which buckled first could b e  detected and reinforced. 

The present method could  be  used  in   conjunct ion  with  exis t ing  opt imiza-  
t i o n  and direct-search programs t o   e s t a b l i s h  minimum-weight configuration 
for panels . w i t h  composite  reinforced  st iffeners.  
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REFERENCE PLAHE 

(k-1)th LAMINA 

N1l 

\ kth LAMINA 

Fig. 4.1 Sign  conventions  for flat laminated p l a t e  

-7 'b 

Fig. 4.2 Beam element  forces and displacements 
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/ x GLOBAL AXES 
y *  z LOCAL AXES 

Y 

Fig. 5.1 Idea l i za t ion  and axes systems  of an a rb i t r a ry   s ec t ion  
of  a s t r u c t u r a l   s e c t i o n  or  s t i f f ened   p l a t e  

\ \ 

Fig .  5.2 Global  coordinates and sign convention  of f la t  plate  element 
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Y 

Fig. 5.3 A j o i n t  where three   p la te   e lements  meet 

a beam element 

Fig. 5.4 A hat -sec t ion   s t i f fened   p la te  w i t h  four 
hat-sections 
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0 

bw=2. 0 

4 b f = O .  8 INCH 

t =0.04 - w  

E 

1 2 
A h w  

3 

F i g .  6 .1  Buckling o f  web-flange with and without  composite 
reinforcement at the flange ( R e f .  18) 

- anslyt ica l   resul ts  from Ref. 18 

Q resu l t s  from present method 

A = axial half-wave  buckle  length 

kw = N b /a Dw where Nx =, load  per  inch on web 

Dw f bending s t i f f n e s s  'of web 

- 2 2  
x w  
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.. .. . .". .. . ". 

2.0 

b = 8.00 4 

\ present   analysis  
(use a = 240 i n . )  

from  Ref. 18 
(use a = 4 

8 = 2  

0 0.5 1 .0  1.5 2.0 

EsAs /Ebt 

Fig. 6.2 Discretely  st iffened  isotropic  plate  buckled  under  axial  
compression - s ingle   sha l low  eccent r ic   s t i f fener  ( R e f ' .  18) 

Es = Young's modulus o f   s t i f f e n e r ;  E = same f o r  p l a t e  

As = cross   sec t iona l   a rea  o f  s t i f f e n e r  

N = load per  inch on p l a t e ,   i nc lud ing   s t i f f ene r   l oad  

II = buckling  load per inch on an  equivalent   plate  of equal 
eqw weight  with  constant  thickness 

*axial half-wave number 
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(u 
n . I= 

cu a 
!a PI 

5 -  

4 I -  

3 -  

2 -  

1 -  

0 

0 .  1 I I I I 
0 0.1 0.2 0 .3  0.4 

~. 

m t  /nd 

Fig.  6.3 Di sc re t e ly   s t i f f ened   p l a t e  - s ing le   eccen t r i c  
or thotropic   deep  s t i f fener  (Ref.  18) 

* number of a x i a l  half-wave 

N = I f J a d  p e r  inch on i so t rop ic  p l a t e  

D = bending  s t i f fness  of' p l a t e  

Geometry a t  points  1 anci 2 on Fig. 6 .3:  ( u n i t  : inch) 

P 

Point d t B n a = length of  p l a t e  ""- 
1 3.0 .Ob8 25.0 2 30.0 

2 4.0 .032 75.0 2 40.0 
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~ 1 .  al loy.  6 s t i f f e n e r s  

a = 12.3 ts = 0.089 

bs = 2.05 tw = 0.058 
bw = I .Ob a = l ength  of 

~ l .  a l loy .  6 s t i f f e n e r s  

a = 15.0 ts=o.080 t =t f w  

p l a t e  

bs = 3.0  tw=0.056 

bv = 1.8 bf=0.54 

A l .  a l loy .  6 s t i f f e n e r s  

9. tw=tf bw bf 
"" 

A 14.4  .04  1.92 .576 
B 1 4 . 4  .04  0.96 .288 
C 16.0 .048 1.50 .500 
Al. a l loy .  13 60°-cells 

a = 6.0 tc = 0.02 for  

bs = 1.0 = 0.01 f o r  
case A 

case B 
tf = 0.02 

A l .  z l loy.  7 c e l l s  

a = 8.96 = 2.56 

'bc = 1.06  bf2 = 1.06 

tc  = .O36 tf = . i$+8 

AJ.. a l loy .  6 s t i f f e n e r s  

a = 16.0 bf = 0.500 

bw = 1.436 ts = 0.080 

bs = 1.876 tk, = t f  = 0.04l 

bfl 

Al. a l loy .  5 s t i f f e n e r s  
a = 20.0 bS = 1.5 
bfl = 0.5 bw = 1.436 
bfl = 1.2 tw=tfl=tfP=.041 

Fig. 6.4 Geometry o f  seven  types  of   isotropical ly   s t i f fened  plates  
and sandwich  panels for analy t ica l   cor re la t ions   (un i t :   inch)  
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't 

0.02 INCH 

Case A of Panel 4 in Fig. 6.4. Core-restrains-face type 

0.02 INCH 

Case B of Panel 4 in   Fig.  6.4. Face-restrains-core  type 

Fig. 6.5 Buckling shapes of  a truss-core sandwich panel 

Case A: Core-restrains-face type 
(Core web thickness = 0.2)  

Case B: Face-restrains-core  type 
(Core web thickness = 0.01) 

Note: The relative  amplitude of each  element 
of the   buckled  shape i s  drawn i n  s c a l e  
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4 1.3- 1.354 

I I bi r" 
-r 

2.30 
L 

t b 
I r 

( 9A-1) &ply, 
(9B-1) 12-ply, .063 1.10 -12 

ANGLE 

t b r 
(gc-1)  12-ply, .d63 1.10 .12 

" 

(9-1) 8-p1y, .Ob0 1.16 .08 

ZEE - 
2 .oo 

b2 

HAT-SE CTI ON 

t b2 r 

( gE-1) 12-ply, 0.43 0.28 ,125 
b3 - 

(9F-1) 5-&, -025 0.50 0.50 -05 

2.0 It- tl 
0.25 DIA. ROD 

(9G-1) t = ,012 (91-1) 8-ply, x 3 
(gH-1) t = ,020 (95-1) 3-ply, -025 050 TEE 

TEE (MACHINED j 

Fig. 7 .1  Geometry of tes t  specimens of boron-reinforced  t i tanium  or  
aluminum alloy s t ruc tu ra l   s ec t ions .  

Materials given i n  Table 7.4. P ly  thickness  of boron  tape 
* 0,0053 inch (wdad,). Adhesive thickness = 0.018  approx. 

m e t a l  boron  composite leyers 
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t k T  18.9 SP*rox. -1 BORON COMPOSITE 
30 or 70 LAYERS 

” .. 

0.05 

Panels 11-A, -B. Al. alloy skin ,and stiffeners, 30 laJrers  composite 
Ree-16. ll-.GA .+,--IA. -4- Tit mum ski-n and stiffeners, 70 layers 

“1 
uu 

Panels 11-C, -D. T i t a n i u m  skin 
and stiffeners 4 1.10 I, 

I L .013 ’ BORON, 20 LAYERS 
Panels 11-E, -F, T i t a n i u m  skin 

and s ti f feners 

Fig. 7 .2  Geometry of t e s t  specimens for composite reinforced 
stiffened.plates and stiffened honeycomb-sandwich panel 

Thickness of each boron tape layer = 0.0053 in. 
Thickness of adheslve layer = 0 .013  approx. 

(Unit : inch) 
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Fig. 8.1 Buckling mode shape p l o t s  of s t h ree - s t i f f ene r  
plate   (ampli tude drawn i n  correct relative  magnitude) 

Buckling Data 
- 

Configuration  Buckling  type  Pcr,  lbs. m cCr, in . / in .  - 
A S t  i f  fener 

buckled 

B S t  i f fener  
buckled 

27,540 6 0.00317 

38,346 5 0.00420 

C Skin and St i f f ene r s  42,491 
buckled 

5 0.00490 

D Skin  near edge 35,285 7 0.00407 

60 



I 

APPENDIX 

SUPPLEMENTARY ANALIYSIS , 
ANALYTICAL  CORRF,LATIONS AND GEOMETRIC  DETAILS 

61 



INTRODUCTION 
The  Appendix of the report   contains  some peripheral   equat ions which are 

not   essent ia l   in   the   unders tanding  of t h e  analysis but  would complement 
t h e   e q u a t i o n s   i n   t h e  main text i n  working  out  numerical  problems  which 
conta in   p la te  elements with  uncoupled features (Bid = 0) .  Also included 
i n   t h e  Appendix are a f e w  addi t iona l .   ana ly t ica l   cor re la t ions  and a de ta i l ed  
geometry of t h e  Boeing  specimens of   composi te   re inforced  plates .  

1. EQUATIONS TO IMPLEMENT EQUATIONS I N  THE MAIN TEXT 

1.1 Equations  for  Rectangular Composite P la t e s  
In  t he  main text ,  equa t ions   fo r   p l a t e s   w i th   e l a s t i ca l ly   r e s t r a ined  sides 

are g iven   in  Eqs. (5.1) t o  ( 5  . loa).  For other  boundary  conditions,  corres- 
ponding  equations are given below. 

Pla tes   wi th  a l l  four sides simply  supported 

The bounda~y conditions are : 
Assume t h a t   t h e   o r i g i n  of the  axes is placed at a corner of the  p la te .  

x = O o r a   y = O o r b  

( i )  w = o 
(ii) Mll = 0 

( i i i )  N11 = 0 ( 11-1 1 

(i) w = 0 

(ii) M22 7 0 

( i i i )  u = 0 ( 11-2 1 

( i v )  v = o ( i v )  N22 = 0 

Displacement funct ions assumed which automatically satisfy t h e  above  condi- 
t i ons  are : 

v = Vm s i n a  cos6  (11-3 I 

u = Urn c o s a   s i n 8  

uh ere 

a = mnx/tL and 13 = n w/L) and m end n are half-wave numbero. 

On subst i tut ing  the  displacement   funct ions  in   the  equi l ibr ium  equat ions,  
one a r r ives  a t  an equation similar t o  Eq. (5.6) from  which the  buckling 
load 311 i s  ob ta ined   exp l i c i t l y  as a f’unction of m and n, V a r y  m and n ,  
t h e  lowest thus  obtained i s  the  buckling load. 

Plates  with  loaded  edges  clamped,  other two sides  simply  supportea 

of t h e   p l a t e  and the  y-axis is at the  middle. The boundary  conditions are: 
Assume a coordinate   system  such  that   the  x-axis coincides  with  one  side 

8 x - 2 s  y = O o r b  

( i )  w = o ( 11-4 ) ( i )  w = 0 (11-5) 
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(ii) w = 0 
,x  (ii) %2 = o 

(iii) N 1 1  = 0 (11-4) (con’ t )  (iii) u = 0 (11-5) ( con’ t ) 
( i v )  v = 0 ( i v )  N22 = 0 

Displacement  functions a s s m d  are (upper rows correspond t o  symmetric mode 
and  lower rows t o  antisymmetric mode): 

a = npix/a 

L3 = nw/b ( 11-61 

4 

i=l 

sinha 
cosha u =  1 U i (  ) sinB 

which s a t i s f i e s   t h e  b o u r v h r y  conditions at y = 0 and b.  

Since  the  displacements   sat isfy  the  condi t ions  of  symmetry or antisymmetry 
at the  middle  of  the  plate (x = O), only  the four conditions at x = a/2 need 
to   be  considered and only  four  roots  of Eq. (5.6) w i l l  b e  used. The o ther  
four ,  s a y ,  the   negat ive  roots ,  w i l l  be  ignored. 

The 4x4 buckling  determinant (Eq. (5 .10) )  f o r   t h e  symmetric a x i a l  mode, 
can  be wr i t ten  as 

When the  coupl ing  matr ix  BiJ is zero, it i s  possible   to   reduce  the  buckl ing 
determinant   to  2x2 s ince   on ly   the  first two boundary  conditions, ( i )  and (ii) 
of  Eq. (11-4) need t o  be  enforced. 

Plate  with  loaded  edues  simply  supported,  one s ide  s imply  sugported,   the  
o ther   s ide  free 

boundary conditions are : 
The coordinate  axes are t h e  same as t h e   e l a s t i c a l l y   r e s t r a i n e d   p l a t e .  The 
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x = O o r a  y = -b/2 

( i )  w = 0 

(ii) M l l  = 0 

( i i i )  N11 = 0 

( i v )  v = o 
(11-8) 

(11-10) 

Displacement  functions assumed are the same as Eq. (5 .1) .  Proceeding 
exac t ly  as .be fo re ,   t he   r e su l t i ng  8x8  determinant  can  be  written 88 

(11-11) 

exp( npi/2)G2i . . . . . 
exp( npi/2)Gli ..... 
exp( npi/2) G4i . . . . . 
em( vi/2)G3i 

exp( -rrpi/2 1 ..... 
exp(-npi/2)Ggi . . . . . 
e x p ( - ~ p ~ / 2 ) ~ ~ ~  . . . . . 
exp(-npi/2)Gbl . . . . . 

= o  

i = 1,2, .  ..8 
where Lli , %i are given i n  Eq. ( 5  .8), Gli t o  G 4 i  are given i n  Eq. ( 5.10a) 
add Gtji is  defined as 

G 5 i  = -B12(m/a)L2i+B22L1i(pi/b)+D12(m/a)~-D22(~i/b) 2 ( 11-12 1 

= 0, the order  of the  buckling  determinant is  reduced t o  4x4, 
since  the  oundary  conditions t h a t  need t o  be  enforced are: 

y -b/2 y = +b/2 
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P l a t e  with loaded  edges simply supported,   the   other  two s ides  free 

res t ra ined   p la te .  'l'he boundary corlditiono arc: 
The loaded  plate has t h e  same coordinate  system as t h e   e l a s t i c a l l y  

x = O a n d a  y = b / 2  

(i)  w = o ( i )  M22 = 0 

( i i i )  Nll = 0 ( 11-14) 

aM22 (ii)- + ;z - = aM12 () 

a Y  ax 

(iii) N12 = 0 

( i v )  v = o ( i v )  N22 = 0 

Displacement  functions assumed are ( the  upper  rows correspond t o  symmetric 
mode and the  lower rows t o  antisymmetric mode) : 

sinhB 
= 1 'i(coshf3 ) s i n a  i=1 

a = mm/a 

B = mpiy/b (11-16) 

The buckling  determinant i s  formed  from the  enforced boundary conditions 
(Eq.  (11-15))  using  the four pos i t i ve   p i   roo t s  from Eq. (5 .6) .  The re su l t i ng  
4x4 buckling  determinant i s  ( f o r   t h e  symmetric mode) 

cash( wi/2)Ggi ... 
sinh(  rpi/2)Gli ... 
cash( npi/2) G4i .. . 
s i n h ( ~ p ~ / 2 ) G ~ ~  ... i=1,2,3,4 

= o  ( 11-17] 

where G l i ,  G 3 i ,  4 i  are given i n  Eq. (5.10a) and C 5 i  i s  given i n  Eq. ( 11-12] 

When Bi = 0,  the  buckling  determinant is reduced i n  s i z e  t o  2x2 Since 
only   the  first two boundary conditions  of Eq. (11-15) need t o  be considered- 

1.2 Equations t'or OLructural  Sections arid S t i f fened   P la tes  

we  complete i n  t h e  main t e x t .  The corresponding  equations  for  the simp 1 er, 
1 ~ n c v 1 1 p . 1 c r l  C D U ~ O  of Bl.1 = 0 w i l l  be given here for   re fe rence .  

Equations  r leceasary  for  the  analysis  involving  plate  elements w i t h  B i  = 0 
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Flat plate element-forces  and displacements in   l oca l   coo rd ina te s  
For the   case   o f  B i J  = 0, the  displacement  functions assumed are: 

( 11-18 : 
4 '1 u = 1 ui e cosa  

i=l 

where a( a = mlrx/a) i s  t h e  same as before. The syrdbol 6 used i n  Eq. (5.18) 
is changed t o  61 and i n   o r d e r   t o   d i s t i n g u i s h   t h e   c h a r a c t e r i s t i c   r o o t s  
obtained  in  bending and i n   s t r e t c h i n g  which are now uncoupled.  "hey are 
clef ined as : 

The displacement  functions after scrtisf5.ing  the  equilibrium  equations 
(through Eqs. ( 4 . 5 )  and (4.6))  reduce t o  the  determinantal   equation of 
Eq. (5.4) where R13,  R23,  R31 and R32 are now zero. Th i s  r e s u l t s   i n  two 
separate   equat ions.  The f i r s t  one is 

( 11-20 1 

These four  elements are t h e  same as i n  Eq. (5.5) with a rep lac ing  b and 
pui r ep lac ing   p i  which, after expansion, becomes 

4 2 
Ku4Pui + Ku2Pui + Kuo = 0 ( 11-21) 

which y i e lds   fou r  roots of  pu t o  be used i n  u and v displacements  in 
Eq. (11-18). V i  i n  Eq. (11-1 8 ) can now be  expressed i n  terms  of U i  as; 

v i = L  u 3i i ( 11-22) 

where 

The second  equation i s  

533 = O 
( 11-24 1 

where R33 is t h e  same as i n  Eq. (5.5) with a .  rep lac ing  b and hi replacing 
pi .  It  is a fourth  order  polynomial i n  even  powers of  hi. The four  values 
of pwi from Eq. (11-24) are t o  be  used w i t h  w displacements   in  Eq. (11-18). 
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Using these hi and pvi values ,   the   three  displacements   in  Sq. (5.131 
can be expressed   in  terms of UT and M i  as: 

4 4 

i=l i=l 
w - 1 wi eB2 s i n a  = 1 uwi wi s i n a  

4 B1 4 
u = 1 ui e cosa = U cosa 1 xi i i=1 i=l 

4 Bl 4 
v = 1 ui L~~ e s i n a  = 1 pui U s i n a  

i=1 i =1 

and by d i f f e ren t i a t ion ,  

4 4 
(11-26) 

Using t h e  above displacements, the  four  stress r e su l t an t s  in Eq. (5.12) 
can be  writ ten as (through E q s .  (4 .5)  and ( 4 . 6 ) ) :  

(11-28) 

4 4 

Transformations t o  the   re fe rence   p lane  
When B i d  = 0,ccorresDonding t o  Eqs. (5.231,  one  has 

4 

i=l 
ws = 1 ( uwi + Yo4wi,wi sins 
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4 

i=l 
v = 1 ( pUiui-z 0 .w. )sins 

6 0 w1 1 

'Jr wri t ten  i n  matrix form 

{R'} is self-evident. 1 
The boundary forces, f o r  B ~ J  = 0,  are 

( 11-40) 
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1.e. 

(11-42) 

Flat-plate  element - forces  and displacements in   global   coordinates  

(5.37) are 
For Bi J  = 0,  equations similar t o  Eqs.  (5.331, (5.341, (5.36), and 

y = +b/2 

y = +b/2 

y = -b/2 

where the  matr ix  [X$+] i s  t h e  matrix [X3] with its y replaced  by  +b/2,   etc.  * 

The equations  for a plate  element  in  global  coordinates  are  complete  with 
the   addi t ion   o f  Eqs. (11-43 t o  46) which w i l l  be  used for a plate  element 
when i t s  Bid  = 0. In  such  case, one  simply uses I) [TI, [X:-], [X:+] 
and [$-I t o   r ep lace  {R1), [$I, [X;], [X;], and [TI respect ively.  

The boundary conditions  corresponding  to a plate  element  with B i J  = 0 
can  be easi ly   der ived from the  above equations and w i l l  not be presented 
here. 

2. ADDITIONAL ANALYTICAL  CORRELATIONS 

Two more correlat ions  of   the   present  method wi th   ana ly t i ca l   r e su l t s  from 
e x i s t i n g   l i t e r a t u r e  w i l l  be  given  here. 

2.1 Buckling  of an Angle Section  (Ref. 11-1) 
Figure 11.1 shows the  buckl ing  load  of  a column, i ts  cross   sect ion i s  an 

angle. Curves A and B a re   resu l t s   t aken  from R e f .  11-1. The former is  
obtained by assuming tha t   t he   ang le  i s  made of  two plates,   each one i s  simply 
supported at three  sides and the   four th  side i s  free.   Correlat ion  with  the 
present method is good even  though the  three-sides-simply-supported assump- 
t i o n  does  not s a t i s fy   exac t ly   t he   con t inu i ty   cond i t ions   a long   t he  common 
boundary of t h e  two plate   e lements .  The second  curve,B,  which treats t h e  
column as an Euler column with  pin  ends,  i s  almost one-half the  value  obtained 
by the   p resent  method which assumes a l ine   suppor t  at the  ends  with  simple 
support   condi t ions  ra ther   than a pin-end phenomenon. Considering  that  an 
Euler column with clamped  ends  has a buckling load four  times the   va lue  of 
its pin-ended counterpar t ,   the  result from t h e   p r e s e n t  method which i s  about 
twice  the pin-ended column so lu t ion  seems reasonable. 

2.2  Buckling of Beaded o r  Lipped Iso t ropic   Sec t ions  and Plates   (Refs .  9, 
11-2, 19, 22) 

Geometries of some i so t rop ic   s ec t ions  and plates   with  beads,   f langes and 
l i p s  are shown i n  Fig. 11-2. These s t ruc tu res  and the  corresponding  analyt ical  
r e s u l t s  of buckling are teken from Refs. 9 ,  11-2, 19 and 22 where beads and 
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l i p s  are t r e a t e d  as beams. The major  difference  between  the  present method 
atid these  references is the omission of c o n t i n u i t i e s   i n  in-plane  displace- 
ments at common‘ boundaries and neglec t   o f fse t  between p l a t e  and beam elements 
in   these   re fe rences .  Table 11.1 shows t h e  r e su l t s   o f   co r re l a t ions  which seem 
t o  be reasonably good. 

Table 11.1 Correlation of beaded o r   l i p p e d  
i so t rop ic   s ec t ions  and p l a t e s  

Section 

Beaded p l a t e  

Beaded p l a t  e 

Flanged p l a t e  
(simple 
support 1 

Flanged  plate 
(clamped) 

Flanged p l a t e  

Lipped 
channel 

Lipped 
Z-section 

Shown in 
f igure  
11-2 

-a 
L- C 

-b 

-C 

-d 

-e 

-f 

-g 

1 
‘t- 

3uckling Load, rll, lb / in . ,  on the  plate   e lement  
without  including load on s t i f f e n e r  

From reference r 
B u c k l i n p l o a d  

12,280 (m=l) * 
”- 

96 

862 (1) 

1,840 (1) 

1,030 

4ef. No. 

11-2 

19 

9 

” 

9 

11-2 

22 

22 

“ .. 

Pres en t 
Method 

1,853 (1) 

1,137 (10)  

Rat i o 

1.07 

1.02 

0.95 

- 

0.99 

1.04 

0.91 

0.91 

* m = a x i a l  half-wave number 

3. Geometry of  Boeing  Test  Specimens  of  Composite P la t e s  

In  Section ( 7 ,  B )  o f   t h e  main t e x t ,   t h e   r e s u l t s   o f   c o r r e l a t i o n s  between 
tests of  Boeing  specimens of  composite p l a t e s  and t he   ana ly t i ca l   p red ic t ions  
were given i n  Table 7.3. The geometry of these  specimens  are  given  here 
i n  Table 11.2. 
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Table 11.2 Composite  Plate  'I'hickness  Data  (Boeing) 

Plate 
Specimen 

UA 

- 

8B 

-. - - . . - . . . 

8C 

8D 

" 

8E 

HF 

8C 

Layer  Thicknesses  (inch) 
Layer ~ ~~ 

Thickness 
and Total 
Thickness 

Specimen  Specimen  Specimen 
(-2) ( -3)  

"___ 
Titanium 
Adhesive 
Composite 

* 0195 0195 0195 
.0185 - 0195  .0125 
.0650  .0650  .0650 

'Pit ani um 
Adhesive 
Composite 

'rot a1 - 
T i  twulium 
Adhesive 
Composite 

Total - 
Titanium 
Adhesive 
Composite 

Tot  a1 

Composite 
Adhesive 

Adhesive 
Composite 

Total 

Composite 
Adhesive 

Adhe 8 i ve 
Compos It e 

Total 

Composite 
Adhesive 
Titanium 
Adhesive 
Composite 

Tot a1 

fri tanim 

- 

'ritmim 

.0317 0317 0317 

.0166  .0176  .0156 
-0557 0557 055'1 
.lo4 .lo5 ,103 

-~~~ ~~~ 

.0340 

.020 

.Ob70 

.lo1 

.0504 

.0171 
m 0375 
.lo5 

,0340 
.01g 
.Ob70 
,100 

.0504 . 01  81 
0375 
,106 

.0340 

.019 

.0b70 

. loo 

,0504 
.0181 

.106 
0375 

.0332 -0332 m 0332 

.0107 .0122 .0122 

.0232 .02  32 .0232 

.0107 .0122 .0122 
0332  .0332  .0332 
.111 .114  .114 

.0274  .0274  .0274 
,01825 
.0327 

.01625 

.Oj27 
.01825 .01625 *01575 
.0274 .0274 .0274 
,124 .120 .119 

.0232 .0232 ,0232 
-02055 0195 5 .01605 

.02055 -01955 ,01605 

.0232 .0232 * 0232 

.127 .125 .118 

-0395  00395 * 0395 
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Table 11-2 Continued 

- "" "" 

Cornpsi te 
.0127 .0147 ,0132 Adheei ve 
. 0 1.68 .0168 .01613 

.0168 .0168 .016H CrJmposite 

.0127 .0147 .0132 Adhesive 

.0530 .05 30 -0530 Titanium 

1'0 t a:] . I I;! . I IO . I 1 3  

4. Determination of Buckl-ing Load by Southwell Plot 

As mentioned i n   t h e  main t e x t ,  i n  some cases  of t he   buck l ing  tes t  of 
composite p l a t e  specimens  which r e s u l t s  are g iven   i n  T a b l e  7.3, it i s  
d i f f i c u l t  t o  determine  the  buckling  load from a load-deflection  curve. 
Some of  the  buckling loads are obtained  by  the  Southwell   plot .  Two of 
such  plots are shown in  Figures   11.3  and 11.4 for  reference.   In  Figure 
11.3, the Southwell   p lot   helped  to   decide t h a t  buckling  occurred at a 
higher la rge-def lec t ion   po in t   ra ther   than  at a lower value i n  the  longi tu-  
dinal  load-deflection  curve.   In  Figure 11.4,  the  p l o t  helped t o  determine 
Lhe buckling  load  in  the  longitudinal  load-deflection  curve which seemed 
Lo have no not iceable   buckl ing  point .  

References  for   the Appendix 

11-1 Timoshenko, S. P., and  Gere, J. M.,  "Theory of E la s t i c   S t ab i l i t y , "  
2nd Ed., 1961, McGraw-Hill Book Company. 

~ . "_ ... .. 

11-2 Goodman, S., "Elastic  Buckling  of  Outstanding  Flanges Clamped at ONe 
Edge and Reinforced  by B u l b s  a t  t h e  Other," TN-1958, October  1949, 
NACA, Table 2, p. 8. 
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WIM'H OF SIDES, INCH. 

Fig. 11.1 Buckling of angle  sect  ion (Ref. 11-1) 

Surve A: Theoretical  curve from  Ref. 11-1 for   buckl ing 
of s ec t ion   t r ea t ed  as two separate  plate  elements 
and  each  one is simply  supported at three   s ides  
and t h e  fourth s ide   f r ee .  

Curve B: Theoretical  curve  from R e f .  11-1 for   buckl ing  
of s ec t ion   t r ea t ed  as an Euler columr~ with  the 
ends  hinged. 

0 From the   p resent   ana lys i s  
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.624 

a d b t F 
(-a) 7.50 0.400 2.80 0.200 Clamped 
‘-b) 4.48 0.064 1.28 0.032 S.S. 

Beaded p la te  

F 

a F 

(-c) 3.20 Clamped 

(-dl 2.56 S.S. 

Flanged p l a t e  

(-e) Flanged p l a t e  a = 10 .O (-f) Lipped channel a = 15.0 
( - g )  Lipped  Zee-section a = 15.0 

Fig.  11.2 Geometry of sections  with  isotropic  beads and l i p s  
a = length of specimen 
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